初中沪教版 (五四制)第十二章 实数综合与测试综合训练题
展开沪教版(上海)七年级数学第二学期第十二章实数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列整数中,与-1最接近的是( )
A.2 B.3 C.4 D.5
2、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
3、若,则的值为( )
A. B. C. D.
4、下列各数是无理数的是( )
A. B.3.33 C. D.
5、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
6、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
7、的算术平方根是( )
A.2 B. C. D.
8、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
9、﹣π,﹣3,,的大小顺序是( )
A. B.
C. D.
10、9的平方根是( )
A.±9 B.9 C.±3 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、与最接近的整数为______.
2、计算: = ______.
3、若是整数,则正整数的最小值是______.
4、实数在数轴上的位置如图所示,则化简的结果为________.
5、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
三、解答题(10小题,每小题5分,共计50分)
1、计算
(1);
(2)
2、阅读下列材料:
①…
②…
③…
根据你观察到的规律,解决下列问题:
(1)写出①组中的第5个等式;
(2)写出②组的第n个等式,并证明;
(3)计算:.
3、求下列各式中的x:
(1);
(2).
4、计算
5、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
6、(1)计算:;
(2)求下列各式中的x:
①;
②(x+3)3=﹣27.
7、计算下列各题:
(1);
(2).
(3).
8、计算:
(1)18+(﹣17)+7+(﹣8);
(2)×(﹣12);
(3)﹣22+|﹣1|+.
9、计算
(1)
(2)
10、计算:
(1)
(2)
-参考答案-
一、单选题
1、A
【分析】
先由无理数估算,得到,且接近3,即可得到答案.
【详解】
解:由题意,
∵,且接近3,
∴最接近的是整数2;
故选:A.
【点睛】
本题考查了无理数的估算,解题的关键是掌握无理数的概念,正确的得到接近3.
2、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
3、B
【分析】
根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.
【详解】
解:,
,
,,
解得,,
所以.
故选:B
【点睛】
本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.
4、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
5、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
6、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
7、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
8、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
9、B
【分析】
根据实数的大小比较法则即可得.
【详解】
解:,
,
,
则,
故选:B.
【点睛】
本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.
10、C
【分析】
根据平方根的定义解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:C.
【点睛】
此题考查了平方根的定义,解题的关键是熟练掌握平方根的定义.如果一个数的平方等于a,即,那么这个数叫做a的平方根.正数有两个平方根,且互为相反数,其中正的那个数也叫算数平方根,0的平方根和算数平方根都是0,负数没有平方根,也没有算术平方根.
二、填空题
1、
【分析】
先判断再根据从而可得答案.
【详解】
解:
而
更接近的整数是
故答案为:5
【点睛】
本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.
2、##
【分析】
根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算
【详解】
解:
故答案为:
【点睛】
本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键.
3、21
【分析】
由,要使是整数,则n必须是21的倍数,且这个倍数必须为整数的平方,由此可求得最小的整数n.
【详解】
∵
∴84n必须为21的整数的平方倍数,即,其中m为正整数
当m=1时,n最小,且最小值为21
故答案为:21
【点睛】
本题考查了算术平方根,算术平方根的性质,对84分解质因数、掌握可开得尽方的数的特征是关键.
4、1
【分析】
由数轴可知,则有,然后问题可求解.
【详解】
解:由数轴可知:,
∴;
故答案为1.
【点睛】
本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键.
5、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
三、解答题
1、(1)1;(2).
【分析】
(1)计算乘方,零指数幂,算术平方根,负指数幂,再计算加减法即可;
(2)先立方根,零指数幂,绝对值化简,去括号合并即可.
【详解】
解:(1),
=,
=1;
(2),
=,
=.
【点睛】
本题考查实数混合计算,零指数幂,负指数幂,算术平方根,立方根,绝对值,掌握以上知识是解题关键.
2、
(1);
(2),证明见解析;
(3)
【分析】
(1)根据前几个等式的变化规律即可求解;
(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;
(3)根据前三组观察出的变化规律求解即可.
(1)
解:∵,
∴第5个等式为;
(2)
解:∵,
∴第n个等式为,
证明:右边=,
左边=,
∵右边=左边,
∴;
(3)
解:∵=,=,=,
∴,
∴
=
=
=
=
=.
【点睛】
本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.
3、(1);(2)
【分析】
(1)方程整理后,开方即可求出x的值;
(2)方程开立方即可求出x的值.
【详解】
(1)等式两边同时除以2得:,
两边开平方得:;
(2)两边开立方得:,
等式两边同时减去1得:.
【点睛】
本题考查了立方根以及平方根,熟练掌握各自的定义是解本题的关键.
4、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
5、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
6、(1);(2)①;②
【分析】
(1)利用去绝对值符号的方法,立方根定义,平方根的定义对式子进行运算即可;
(2)①对等式进行开平方运算,再把x的系数转化为1即可;
②对等式进行开立方运算,再移项即可.
【详解】
解:(1)
=2(﹣2)﹣3
=﹣3;
(2)①
±3
x=±6;
②(x+3)3=﹣27
x+3=﹣3
x=﹣6.
【点睛】
本题主要考查实数的运算,立方根,平方根,解答的关键是对相应的运算法则的掌握与应用.
7、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
8、(1)0;(2)1;(3)
【分析】
(1)根据有理数的加法计算法则求解即可;
(2)根据有理数的乘法分配律求解即可;
(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.
【详解】
解:(1)
;
(2)
;
(3)
.
【点睛】
本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.
9、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
10、(1);(2)
【分析】
(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;
(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.
【详解】
解:(1)
=
=
=;
(2)
=
=
=.
【点睛】
本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步练习题,共19页。试卷主要包含了估计的值应该在.,下列等式正确的是.,实数﹣2的倒数是,下列说法等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了下列说法中正确的有,规定一种新运算,a为有理数,定义运算符号▽,下列说法正确的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步测试题,共1页。试卷主要包含了下列各数中,比小的数是,下列说法正确的是,在下列四个实数中,最大的数是,若与互为相反数,则a等内容,欢迎下载使用。