年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形重点解析试题(含详细解析)

    精品试卷京改版八年级数学下册第十五章四边形重点解析试题(含详细解析)第1页
    精品试卷京改版八年级数学下册第十五章四边形重点解析试题(含详细解析)第2页
    精品试卷京改版八年级数学下册第十五章四边形重点解析试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中北京课改版第十五章 四边形综合与测试习题

    展开

    这是一份初中北京课改版第十五章 四边形综合与测试习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列测量方案中,能确定四边形门框为矩形的是(    A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等2、下列图案中,是中心对称图形,但不是轴对称图形的是(   A. B.C. D.3、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线ADBC于点DEAD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是(    A.1 B.1.5 C.2 D.44、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.105、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为(    A.14或15或16 B.15或16或17 C.15或16 D.16或176、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等7、下图是文易同学答的试卷,文易同学应得(    A.40分 B.60分 C.80分 D.100分8、如图,MN分别是正五边形ABCDE的边BCCD上的点,且BM=CNAMBN于点P,则∠APN的度数是(   A.120° B.118° C.110° D.108°9、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了(    )米.A.80 B.100 C.120 D.14010、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为(    A.46.5cm B.22.5cm C.23.25cm D.以上都不对第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.2、如图,在矩形中,,点是线段上的一点(不与点重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.3、如图,已知ABCD的平分线相交于,求的度数_____.4、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____5、在四边形ABCD中,若AB//CDBC_____AD,则四边形ABCD为平行四边形.三、解答题(5小题,每小题10分,共计50分)1、如图,已知在RtABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AEDE,过点CCFDE于点F,且DFEF(1)求证:ADCE    (2)若CD=5,AC=6,求△AEB的面积.2、(探究发现)(1)如图1,△ABC中,ABAC,∠BAC=90°,点DBC的中点,EF分别为边ACAB上两点,若满足∠EDF=90°,则AEAFAB之间满足的数量关系是     (类比应用)(2)如图2,△ABC中,ABAC,∠BAC=120°,点DBC的中点,EF分别为边ACAB上两点,若满足∠EDF=60°,试探究AEAFAB之间满足的数量关系,并说明理由.(拓展延伸)(3)在△ABC中,ABAC=5,∠BAC=120°,点DBC的中点,EF分别为直线ACAB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.3、如图,将▱ABCD的边AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:△BEF≌△CDF(2)连接BDCE,若∠BFD=2∠A,求证四边形BECD是矩形.4、在中,,斜边,过点,以AB为边作菱形ABEF,若,求的面积.5、(3)点PAC上一动点,则PE+PF最小值为. -参考答案-一、单选题1、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.2、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.3、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点GAC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.
    AC=BC=8,∠BCA=60°,
    ∴△ABC为等边三角形,且AD为△ABC的对称轴,
    CD=CG=AB=4,∠ACD=60°,
    ∵∠ECF=60°,
    ∴∠FCD=∠ECG
    在△FCD和△ECG中,
    ∴△FCD≌△ECGSAS),
    DF=GE
    EGBC时,EG最小,
    ∵点GAC的中点,
    ∴此时EG=DF=CD=BC=2.
    故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.4、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.5、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.6、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.7、B【分析】分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.【详解】解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,∴文易同学答对3道题,得60分,故选:B.【点睛】本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键8、D【分析】由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.【详解】解:∵五边形ABCDE为正五边形,
    AB=BC,∠ABM=∠C
    在△ABM和△BCN

    ∴△ABM≌△BCNSAS),
    ∴∠BAM=∠CBN
    ∵∠BAM+∠ABP=∠APN
    ∴∠CBN+∠ABP=∠APN=∠ABC=
    ∴∠APN的度数为108°;
    故选:D.【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.9、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.10、C【分析】如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,则,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,∴△DEF的周长同理可得:△GHI的周长∴第三次作中位线得到的三角形周长为∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1、6【分析】根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得n﹣2)•180=360×2,解得:n=6.故这个多边形的边数为6.故答案为:6.【点睛】本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.2、【分析】根据题意分三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形是矩形∵将△沿折叠,使得点落在处,,则①当时,如图过点,则四边形为矩形解得②当时,如图,设交于点垂直平分中,联立,解得③当时,如图,垂直平分垂直平分此时重合,不符合题意综上所述,故答案为:【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.3、110°度【分析】过点EEHAB,然后由ABCD,可得ABEHCD,然后根据两直线平行内错角相等可得∠ABE=∠BEH,∠CDE=∠DEH,然后根据周角的定义可求∠ABE+∠CDE的度数;再根据角平分线的定义求出∠EBF+∠EDF的度数,然后根据四边形的内角和定理即可求∠BFD的度数.【详解】解:过点EEHAB,如图所示,ABCDABEHCD∴∠ABE=∠BEH,∠CDE=∠DEH∵∠BEH+∠DEH+∠BED=360°,∠BED=140°,∴∠BEH+∠DEH=220°,∴∠ABE+∠CDE=220°,∵∠ABE和∠CDE的平分线相交于F∴∠EBF+∠EDF=(∠ABE+∠CDE)=110°,∵∠BFD+∠BED+∠EBF+∠EDF=360°,∴∠BFD=110°.故答案为:110°.【点睛】本题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.另外过点EEHAB,也是解题的关键.4、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.【详解】解:由题意得:n-2)×180°=360°×2,解得:n=6;故答案为6.【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.5、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.【详解】解:根据两组对边分别平行的四边形是平行四边形可知:AB//CDBC//AD∴四边形ABCD为平行四边形.故答案为://.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题1、(1)见解析;(2)39【分析】(1)首先根据CFDEDFEF得出CFDE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.【详解】(1)证明:∵DFEF  ∴点FDE的中点 又∵CFDE  CFDE的中垂线CDCE又∵在RtABC中,∠ACB=90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE==5 AB=10  ∴在RtABC中,BC==8EB=EC+BC=13【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.2、(1)ABAF+AE;(2)AE+AFAB,理由见解析;(3)【分析】(1)证明△BDFOADE,可得BFAE,从而证明ABAF+AE(2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GFAE,可得AGABAF+FGAE+AF(3)分两种情况:当点E在线段AC上时或当点EAC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AFHE,从而求解.【详解】(1)如图1,∵ABAC,∠BAC=90°,∴∠B=∠C=45°,DBC中点,ADBC,∠BAD=∠CAD=45°,ADBDCD∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADEBDAD,∠B=∠CAD=45°,∴△BDF≌△ADEASA),BFAEABAF+BFAF+AE故答案为:ABAF+AE(2)AE+AFAB.理由是:如图2,取AB中点G,连接DG∵点G斜边中点,DGAGBGABABAC,∠BAC=120°,点DBC的中点,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADEDGAG,∠BAD=60°,∴△ADG为等边三角形,∴∠AGD=∠CAD=60°,GDAD∴△GDF≌△ADEASA),GFAEAGABAF+FGAE+AFAE+AFAB(3)当点E在线段AC上时,如图3,取AC的中点H,连接DHABAC=5,CE=1,∠EDF=60°时,AE=4,此时FBA的延长线上,同(2)可得:△ADF≌△HDEASA),AFHEAHCHACCE=1,当点EAC延长线上时,如图4,同理可得:综上:AF的长为【点睛】本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键3、(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质可得ABCDAB=CD,进而证明∠BEF=∠FDC,∠FBE=∠FCD, ASA证明△BEF≌△CDF.(2)根据等边对等角证明FD=FC,进而证明,根据对角线相等的平行四边形是矩形即可证明【详解】(1)∵四边形ABCD为平行四边形,ABCDAB=CD.BE=AB,BECDBE=CD.∴∠BEF=∠FDC,∠FBE=∠FCD,∴△BEF≌△CDF.(2)∵BECDBE=CD.∴四边形BECD为平行四边形, DF=DE,CF=BC, ∵四边形ABCD为平行四边形,∴∠FCD=∠A,∵∠BFD=∠FCD+∠FDC,∠BFD=2∠A,∴∠FDC=∠FCD,FD=FC.DF=DE,CF=BC,BC=DE,∴▱BECD是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,掌握平行四边形的性质与判定是解题的关键.4、4【分析】分别过点ECEHCG垂直AB,垂足为点HG,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过垂足为点 四边形ABEF为菱形,中,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.5、见解析【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点FPB三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,ABCD∴∠2=∠3,∴∠1=∠3,AF=CF∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,∠D=90°,FD=x,则AF=CF=8-xRtAFD中,根据勾股定理得AD2+DF2=AF2∴42+x2=(8-x2解得x=3  ,即DF=3,CF=8-3=5,(3)如图,连接PB根据折叠得:CE=CB,∠ECP=∠BCPCP=CP∴△ECP≌△BCPPE=PBPE+PF=PE+PB∴当点FPB三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,∠BCF=90°,PE+PF最小值为【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键. 

    相关试卷

    数学第十五章 四边形综合与测试课时作业:

    这是一份数学第十五章 四边形综合与测试课时作业

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试同步达标检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试同步达标检测题,共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map