北京课改版八年级下册第十五章 四边形综合与测试巩固练习
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试巩固练习,共27页。试卷主要包含了下列说法中,正确的是,下列图形中不是中心对称图形的是,如图,M等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2、下列四个图形中,为中心对称图形的是( )A. B. C. D.3、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为( )A. B. C. D.4、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE5、下列图标中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.6、下列说法中,正确的是( )A.若,,则B.90′=1.5°C.过六边形的每一个顶点有4条对角线D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查7、下列图形中不是中心对称图形的是( )A. B. C. D.8、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是( )A. B. C. D.549、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )A.120° B.118° C.110° D.108°10、下列图形中,是中心对称图形的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点D、E、F分别是△ABC三边的中点,△ABC的周长为24,则△DEF的周长为______.2、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=____3、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、.若,,则图中阴影部分的面积为_______.(结果保留)4、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.5、一个正多边形的每一个内角比每一个外角的5倍还小60°,则这个正多边形的边数为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.2、△ABC为等边三角形,AB=4,AD⊥BC于点D,E为线段AD上一点,AE=.以AE为边在直线AD右侧构造等边△AEF.连结CE,N为CE的中点.(1)如图1,EF与AC交于点G,①连结NG,求线段NG的长;②连结ND,求∠DNG的大小.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α.M为线段EF的中点.连结DN、MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论.3、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以.(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值.4、(探究发现)(1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是 .(类比应用)(2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.5、已知:▱ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BM∥DN,BM=DN.
-参考答案-一、单选题1、D【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
C.是轴对称图形,不是中心对称图形,故本选项符合题意;
D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.3、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解: 矩形ABCD, 设BE=x, ∵AE为折痕, ∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°, Rt△ABC中,∴Rt△EFC中,,EC=2-x, ∴, 解得:, 则点E到点B的距离为:. 故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.4、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.5、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、B【分析】由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.【详解】解:若,则故A不符合题意;90′=故B符合题意;过六边形的每一个顶点有3条对角线,故C不符合题意;疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;故选:B.【点睛】本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.7、B【分析】根据中心对称图形的概念求解.【详解】解:A、是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不合题意;D、是中心对称图形,故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.8、C【分析】过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.【详解】如图,过点F作,分别交于M、N,∵四边形ABCD是矩形,∴,,∵点E是BC的中点,∴,∵F是AE中点,∴,∴.故选:C.【点睛】本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.9、D【分析】由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.【详解】解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.【点睛】本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.10、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.二、填空题1、12【分析】据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.【详解】解:∵如图所示,D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴DFBC,FEAB,DEAC,∴△DEF的周长=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案为:12.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的基本思路.2、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题.【详解】解:由题意得:(n-2)×180°=360°×2,解得:n=6;故答案为6.【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键.3、##【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.【详解】解:∵四边形是矩形,∴,,,∴,,∴图中阴影部分的面积为:.故答案为:.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.4、【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AE交FG于O,如图,
∵四边形ABCD为菱形,∠A=60°,
∴△BDC为等边三角形,∠ADC=120°,
∵E点为CD的中点,
∴CE=DE=1,BE⊥CD,
在Rt△BCE中,BE=CE=,
∵AB∥CD,
∴BE⊥AB,
∴.
∴,
设AF=x,
∵菱形纸片翻折,使点A落在CD的中点E处,
∴FE=FA=x,
∴BF=2-x,
在Rt△BEF中,(2-x)2+()2=x2,解得:,
在Rt△AOF中,,
∴.
故答案为: .【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数.【详解】设正多边形的外角为x度,则内角为(5x−60)度由题意得:解得:则正多边形的边数为:360÷40=9即这个正多边形的边数为9故答案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角.三、解答题1、【分析】根据平行四边形的性质可得,,勾股定理求得,,进而求得【详解】解:四边形是平行四边形 AB⊥AC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.2、(1)①;②;(2)的大小是定值,证明见解析.【分析】(1)①先根据等边三角形的性质、勾股定理可得,从而可得,再利用勾股定理可得,然后根据等边三角形的性质可得,最后根据直角三角形斜边上的中线等于斜边的一半即可得;②先根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形的性质可得,从而可得,然后根据四边形的内角和即可得;(2)连接,先证出,根据全等三角形的性质可得,从而可得,再根据三角形中位线定理可得,然后根据三角形的外角性质、角的和差即可得出结论.【详解】解:(1)①∵是等边三角形,,,∴,∴,∵,∴,∴,∵是等边三角形,,,∴,即,又∵点为的中点,∴;②如图,连接,由(1)①知,,∵,点为的中点,∴,,,∴;(2)的大小是定值,证明如下:如图,连接,∵和都是等边三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵点为的中点,点为的中点,∴,∴,∵,即点是的中点,∴,∴,∵,∴,∴的大小为定值.【点睛】本题考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形中位线定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和利用到三角形中位线定理是解题关键.3、(1);;;(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,即可得出;连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,即可得出.【详解】解:(1);;(2)证明;由题意得,在正方形ABCD中,∵,,在和中;证明:;由题意得,在正方形HIJK中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;证明:由题意得,在正方形EBFG中,,,∵AC为正方形ABCD的对角线,∴,在和中,∴;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形, .∴连接HJ,KI,过点H作HM⊥AD于点M,过点I作IN⊥CD于点N,则被分为9个面积相等的等腰直角三角形,∴.∴,.【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键.4、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或【分析】(1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;(2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;(3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.【详解】(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D为BC中点,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;故答案为:AB=AF+AE;(2)AE+AF=AB.理由是:如图2,取AB中点G,连接DG,∵点G是斜边中点,∴DG=AG=BG=AB,∵AB=AC,∠BAC=120°,点D为BC的中点,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADE,∵DG=AG,∠BAD=60°,∴△ADG为等边三角形,∴∠AGD=∠CAD=60°,GD=AD,∴△GDF≌△ADE(ASA),∴GF=AE,∴AG=AB=AF+FG=AE+AF,∴AE+AF=AB;(3)当点E在线段AC上时,如图3,取AC的中点H,连接DH,当AB=AC=5,CE=1,∠EDF=60°时,AE=4,此时F在BA的延长线上,同(2)可得:△ADF≌△HDE (ASA),∴AF=HE,∵AH=CH=AC=,CE=1,∴,当点E在AC延长线上时,如图4,同理可得:;综上:AF的长为或.【点睛】本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键5、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证.【详解】如图,连接,
∵四边形ABCD为平行四边形,∴AO=OC,DO=OB.∵M为AO的中点,N为CO的中点,即∴MO=ON.四边形是平行四边形,∴BM∥DN,BM=DN.【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.
相关试卷
这是一份2021学年第十五章 四边形综合与测试练习题,共29页。试卷主要包含了下列图形中,是中心对称图形的是,下列∠A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试课时训练,共33页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共1页。