终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十五章四边形专项训练试卷(含答案详解)

    立即下载
    加入资料篮
    2022年最新精品解析京改版八年级数学下册第十五章四边形专项训练试卷(含答案详解)第1页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专项训练试卷(含答案详解)第2页
    2022年最新精品解析京改版八年级数学下册第十五章四边形专项训练试卷(含答案详解)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试一课一练

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试一课一练,共21页。
    京改版八年级数学下册第十五章四边形专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是(   A. B. C. D.2、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(    A.5 B.6 C.8 D.103、下列图标中,既是中心对称图形又是轴对称图形的是(    A. B. C. D.4、下列测量方案中,能确定四边形门框为矩形的是(    A.测量对角线是否互相平分 B.测量两组对边是否分别相等C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等5、垦区小城镇建设如火如荼,小红家买了新楼.爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式(       A.1种 B.2种 C.3种 D.4种6、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是(    A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<127、下列图形中,既是轴对称图形,又是中心对称图形的是(    A. B.C. D.8、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是(    A. B.C.  D.9、下列图形中,既是中心对称图形,又是轴对称图形的个数是(    A.1 B.2 C.3 D.410、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.2、已知正方形ABCD的一条对角线长为2,则它的面积是______.3、如图,在矩形ABCD中,AB=2,AD=2EBC边上一动点,FGAD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
     4、如图,在中,上的两个动点,且,则的最小值是________.5、如图,在长方形ABCD中,.在DC上找一点E,沿直线AE折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC中,DAB上一点,ADACAECD,垂足是EFBC的中点,求证:BD=2EF2、已知:如图,在中,求证:互相平分.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落在点E处,AECD于点F,且已知AB=8,BC=4(1)判断△ACF的形状,并说明理由;(2)求△ACF的面积;3、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).4、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接ACBE(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.5、如图,在中,过点于点,点在边上,,连接(1)求证:四边形是矩形;(2)若,求证:平分 -参考答案-一、单选题1、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBORtAOB中,由勾股定理得:故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、D【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意;故选:D.【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.5、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360°,并以此为依据进行求解.【详解】解:正三角形每个内角是60°,能被360°整除,所以能单独镶嵌成一个平面;正方形每个内角是90°,能被360°整除,所以能单独镶嵌成一个平面;正五边形每个内角是108°,不能被360°整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120°,能被360°整除,所以能单独镶嵌成一个平面.故只购买一种瓷砖进行平铺,有3种方式.故选:C.【点睛】本题主要考查了平面镶嵌.解这类题,根据组成平面镶嵌的条件,逐个排除求解.6、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,中,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.7、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.8、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.9、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形.故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.二、填空题1、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2、6【分析】正方形的面积:边长的平方或两条对角线之积的一半,根据公式直接计算即可.【详解】解: 正方形ABCD的一条对角线长为2 故答案为:【点睛】本题考查的是正方形的性质,掌握“正方形的面积等于两条对角线之积的一半”是解题的关键.3、【分析】如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当EB点或C点重合,GD点重合或FA点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=【详解】如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形故当EB点或C点重合,GD点重合或FA点重合时,FG的长度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°AF=FG=AD-AF=故答案为:
    【点睛】本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.4、【分析】过点AAD//BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接AM,三点DMA′共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题.【详解】解:过点AAD//BC,且ADMN,连接MD则四边形ADMN是平行四边形,
    MDANADMN
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接AM
    AMAM
    AMANAMDM
    ∴三点DMA′共线时,AMDM最小为AD的长,
    AD//BCAOBC
    ∴∠DA=90°,
    ,,
    ∴BC=BOCOAO
    在Rt△AD中,由勾股定理得:
    D
    的最小是值为:故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.5、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EFEC,然后在RtCEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形AB=CD=9,BC=ADABBF=54,BF=12.             RtABF中,AB=9,BF=12,由勾股定理得,BC=AD=AF=15,CF=BC-BF=15-12=3.DE=x,则CE=9-xEF=DE=xx2=(9-x2+32解得,x=5.DE=5.     EC=DC-DE=9-5=4.     ∴△FCE的面积=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、见解析.【分析】先证明 再证明EF是△CDB的中位线,从而可得结论.【详解】证明:∵ADACAECDCEEDFBC的中点EF是△CDB的中位线BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、证明见解析【分析】连接,由三角形中位线定理可得,可证四边形ADEF是平行四边形,由平行四边形的性质可得AEDF互相平分;【详解】
     证明:连接,ADDBBEECBEECAFFC∴四边形ADEF是平行四边形,AEDF互相平分.【点睛】本题考查了平行四边形的性质判定和性质及三角形中位线定理,灵活运用这些性质是解题的关键.(1)△ACF是等腰三角形,理由见解析;(2)10;(3)3、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出符合题意的答案;(2)直接利用中心对称图形的性质得出符合题意的答案.【详解】解:(1)如图所示:①②③都是轴对称图形;(2)如图所示:④⑤都是中心对称图形.【点睛】此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.4、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FCAE=BC,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形, AB=CDCE=DCAB=EC∴四边形ABEC是平行四边形; (2)∵由(1)知,四边形ABEC是平行四边形, FA=FEFB=FC∵四边形ABCD是平行四边形, ∴∠ABC=∠D又∵∠AFC=2∠ADC∴∠AFC=2∠ABC∵∠AFC=∠ABC+∠BAF∴∠ABC=∠BAFFA=FBFA=FE=FB=FCAE=BC∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.5、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,.即 四边形是平行四边形.四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 中,由勾股定理,得平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共1页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。

    数学八年级下册第十五章 四边形综合与测试同步训练题:

    这是一份数学八年级下册第十五章 四边形综合与测试同步训练题,共33页。试卷主要包含了如图,M,如图,在六边形中,若,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map