年终活动
搜索
    上传资料 赚现金

    2022年强化训练京改版八年级数学下册第十五章四边形章节练习练习题(无超纲)

    2022年强化训练京改版八年级数学下册第十五章四边形章节练习练习题(无超纲)第1页
    2022年强化训练京改版八年级数学下册第十五章四边形章节练习练习题(无超纲)第2页
    2022年强化训练京改版八年级数学下册第十五章四边形章节练习练习题(无超纲)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共24页。试卷主要包含了下列∠A等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为(    A.20º B.25º C.30º D.35º2、已知正多边形的一个外角等于45°,则该正多边形的内角和为(  )A.135° B.360° C.1080° D.1440°3、如图,将矩形纸片ABCD沿BD折叠,得到△BCDCDAB交于点E,若∠1=40°,则∠2的度数为(  )A.25° B.20° C.15° D.10°4、如图,在中,,点分别是上的点,,点分别是的中点,则的长为(    ).A.4 B.10 C.6 D.85、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是(    A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:26、下列图案中,是中心对称图形,但不是轴对称图形的是(   A. B.C. D.7、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(    A.5 B.6 C.8 D.108、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为(     A. B. C. D.9、如图,在△ABC中,点EF分别是ABAC的中点.已知∠B=55°,则∠AEF的度数是(  )A.75° B.60° C.55° D.40°10、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是(    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一个多边形的内角和比它的外角和的2倍还多180°,则它是________边形.2、若点关于原点的对称点是,则______.3、如图,△ABC中,DE分别是ABAC的中点,若DE=4cm,则BC=_____cm.
     4、如图,在矩形ABCD中,AB=2,AD=2EBC边上一动点,FGAD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
     5、点P(1,2)关于原点中心对称的点的坐标为_______.三、解答题(5小题,每小题10分,共计50分)1、(教材重现)如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:多边形边数……十二……n从一个顶点出发,得到对角线的数量1条          ……     ……     (问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有      对角线(用含有n的代数式表示).(问题拓展)(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接      条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接      条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接      条线段(用含有x的代数式表示,不必化简).2、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APEAPE按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BPCE的数量关系是     BCCE的位置关系是     (2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2BE=2,请直接写出APE的面积.3、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)4、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.5、如图,中,(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,连接,交于点O.求证:四边形是菱形. -参考答案-一、单选题1、C【分析】依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,从而求解.【详解】ADBC
    ∴∠AEB=∠DAE=∠B=80°,
    AE=AB=AD
    在三角形AED中,AE=AD,∠DAE=80°,
    ∴∠ADE=50°,
    又∵∠B=80°,
    ∴∠ADC=80°,
    ∴∠CDE=∠ADC-∠ADE=30°.
    故选:C.【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE的度数.2、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45°, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.3、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CDAB
    ∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
    由折叠可得∠DB C′=∠DBC=50°,
    ∴∠2=∠DB C′−∠DBA=50°−40°=10°,
    故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.4、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点PD分别是AFAB的中点,PD=BF=6,PD//BC∴∠PDA=∠CBA同理,QD=AE=8,∠QDB=∠CAB∴∠PDA+∠QDB=90°,即∠PDQ=90°,PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.6、C【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A.既是轴对称图形,又是中心对称图形,本选项不符合题意;B.既是轴对称图形,又是中心对称图形,本选项不符合题意;C.是中心对称图形,但不是轴对称图形,本选项符合题意;D.既是轴对称图形,又是中心对称图形,本选项不符合题意;故选:C.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形和中心对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.7、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBORtAOB中,由勾股定理得:故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.8、C【分析】由于AE是折痕,可得到AB=AFBE=EF,再求解BE=x,在RtEFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解: 矩形ABCD BE=xAE为折痕, AB=AF=1,BE=EF=x,∠AFE=∠B=90°, RtABC中,RtEFC中,EC=2-x解得:则点E到点B的距离为:故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.9、C【分析】EF是△ABC的中位线,得EFBC,再由平行线的性质即可求解.【详解】解:∵点EF分别是ABAC的中点,EF是△ABC的中位线,EFBC∴∠AEF=∠B=55°,故选:C【点睛】本题考查了三角形中位线定理以及平行线的性质;熟练掌握三角形中位线定理,证出EFBC是解题的关键.10、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题1、七【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可求解.【详解】解:设多边形的边数为n,则
    n-2)•180°-2×360°=180°,
    解得n=7.
    故答案为:七.【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理列出方程是解题的关键.2、【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:由关于坐标原点的对称点为,得,解得:故答案为:【点睛】本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、8【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,DE分别是ABAC的中点DE是△ABC的中位线,BC=2DE=8cm故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.4、【分析】如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当EB点或C点重合,GD点重合或FA点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=【详解】如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形故当EB点或C点重合,GD点重合或FA点重合时,FG的长度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°AF=FG=AD-AF=故答案为:
    【点睛】本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.5、(-1,-2)【分析】平面直角坐标系中任意一点Pxy),关于原点的对称点是(﹣x,﹣y).据此作答.【详解】解:根据中心对称的性质,得点P(1,2)关于原点中心对称的点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟知关于原点对称的点的坐标特征是解题的关键.三、解答题1、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,条;条;(1)6;(2)105;(3)【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;边形的一个顶点出发,得到条对角线.边形的一个顶点可以得到条对角线,故个顶点共有,由于每条对角线重复连接了一次,故n边形共有条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,对角线条数为2,四边形的边数为4,一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,对角线条数为90,四边形的边数为15,一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有个点可以组成边形,每个点可以得到条对角线,四个点共条,每条对角线重复连接了一次,对角线条数为四边形的边数为一共可以连接条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.2、(1)BPCECEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;(3)分两种情形:当点PBD的延长线上时或点P在线段DB的延长线上时,连接ACBD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AOPOPD的长及等边三角形APE的边长可得结论.【详解】解:(1)如图1,连接AC,延长CEAD于点H∵四边形ABCD是菱形,ABBC∵∠ABC=60°,∴△ABC是等边三角形,ABAC,∠BAC=60°;∵△APE是等边三角形,APAE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC∴△BAP≌△CAESAS),BPCE∵四边形ABCD是菱形,∴∠ABPABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,CEBC故答案为:BPCECEBC(2)(1)中的结论:BPCECEAD 仍然成立,理由如下:如图2中,连接AC,设CEAD交于H∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,ABAC,∠BAD=120°,∠BAP=120°+∠DAP∵△APE是等边三角形,APAE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP∴∠BAP=∠CAE∴△ABP≌△ACESAS),BPCE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,CEAD∴(1)中的结论:BPCECEAD 仍然成立;(3)如图3中,当点PBD的延长线上时,连接ACBD于点O,连接CEBE,作EFAPF∵四边形ABCD是菱形,ACBD   BD平分∠ABC∵∠ABC=60°,AB=2∴∠ABO=30°,AOABOBAO=3,BD=6,由(2)知CEADADBCCEBCBE=2BCAB=2CE=8,由(2)知BPCE=8,DP=2,OP=5,AP=2∵△APE是等边三角形,SAEP×(22=7如图4中,当点PDB的延长线上时,同法可得AP=2SAEP×(22=31【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.3、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.【详解】连接BDAD相交于点O,如图:∵四边形ABCD是一个菱形,ACBD∵∠ABC=120°,∴∠A=60°,∴△ABD为等边三角形,∵菱形的周长为40m,∴菱形的边长为10m,BD=10m,BO=5m,∴在Rt△AOB中,m,AC=2OAm,EFGH分别是ABBCCDDA的中点,EHBD =5m,EFAC=5m,∴S矩形=5×5=50m2则需投资资金50×30=1500×1.732≈2598元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.4、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.5、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:中,又∵∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明. 

    相关试卷

    北京课改版第十五章 四边形综合与测试达标测试:

    这是一份北京课改版第十五章 四边形综合与测试达标测试,共37页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试练习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试练习题,共27页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共34页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map