年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十五章四边形专题训练试卷(名师精选)

    立即下载
    加入资料篮
    2021-2022学年最新京改版八年级数学下册第十五章四边形专题训练试卷(名师精选)第1页
    2021-2022学年最新京改版八年级数学下册第十五章四边形专题训练试卷(名师精选)第2页
    2021-2022学年最新京改版八年级数学下册第十五章四边形专题训练试卷(名师精选)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试课后复习题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试课后复习题,共27页。试卷主要包含了下列图形中,是中心对称图形的是,以下分别是回收等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形2、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为(  )A.6 B.6.5 C.10 D.133、下列图形中,可以看作是中心对称图形的是(     A. B. C. D.4、下列图案中既是轴对称图形又是中心对称图形的是(    A. B. C. D.5、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(    A.2.5 B.2 C. D.6、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统.以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是(    A.可回收物 B.有害垃圾 C.厨余垃圾 D.其他垃圾7、下列图形中,是中心对称图形的是(    A. B. C. D.8、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA,则点C的坐标为(  )A.(,1) B.(1,1) C.(1, D.(+1,1)9、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.10、如图,ABC是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是(    A.ABC都不在 B.只有BC.只有AC D.ABC第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、菱形ABCD的周长为,对角线ACBD相交于点OAOBO=1:2,则菱形ABCD的面积为________.2、如图,点P是矩形ABCD的对角线AC上一点,过点PEFBC,分别交ABCD于点EF,连接PBPD,若AE=2,PF=9,则图中阴影面积为______;3、如图,MN分别是矩形ABCD的边ADAB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.4、若一个多边形的内角和是外角和的倍,则它的边数是_______.5、一个矩形的两条对角线所夹的锐角是60°,这个角所对的边长为10cm,则该矩形的面积为_______.三、解答题(5小题,每小题10分,共计50分)1、在四边形ABCD中,∠A=100°,∠D=140°.(1)如图①,若∠B=∠C,则∠B     度;(2)如图②,作∠BCD的平分线CEAB于点E.若CEAD,求∠B的大小.2、如图,平行四边形ABCD中,对角线AC、BD相交于点OABACAB=3,AD=5,求BD的长.3、已知长方形ABCOO为坐标原点,B的坐标为(8,6),点AC分别在坐标轴上,P是线段BC上的动点,设PCm(1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为   ,此时若△APD是等腰直角三角形,求点D的坐标;(2)直线y=2xb过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.4、如图,□ABCD中,点EF分别在ABCD上,且BEDF.求证:AFEC
     5、如图,ABCD的对角线ACBD相交于点OBD12cm ,AC6cm ,点E在线段BO上从点B以1cm/s的速度向点O运动,点F在线段OD上从点O 以2cm /s 的速度向点D运动. (1)若点EF同时运动,设运动时间为t秒,当t 为何值时,四边形AECF是平行四边形.(2)在(1)的条件下,当AB为何值时,AECF是菱形;(3)求(2)中菱形AECF的面积. -参考答案-一、单选题1、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.2、B【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.3、A【分析】根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.【详解】解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,A选项是中心对称图形.故本选项正确.故选:A.【点睛】本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.4、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,中,由勾股定理可知:弧长为,故在数轴上表示的数为故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.6、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【分析】根据中心对称图形的定义求解即可.【详解】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【点睛】此题考查了中心对称图形,解题的关键是熟练掌握中心对称图形的定义.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.8、B【分析】CDx轴,根据菱形的性质得到OC=OA=,在RtOCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CDx轴于点D则∠CDO=90°,∵四边形OABC是菱形,OA=OC=OA=又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCDCD=ODRtOCD中,OC=CD2+OD2=OC2∴2OD2=OC2=2,OD2=1,OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.9、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.10、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD为直角三角形,DAC中点,∵覆盖半径为300 ,ABC三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.二、填空题1、4【分析】根据菱形的性质求得边长,根据AOBO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形是菱形菱形ABCD的周长为 AOBO=1:2,故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.2、【分析】PMADM,交BCN,根据矩形的性质可得SPEB=SPFD即可求解.【详解】解:作PMADM,交BCN

    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,S=9+9=18,故答案为:18.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明3、10【分析】EEFADF,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过EEFADF∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENMAM=EM∵矩形ABCD∴∠B=∠A=∠D=90°,  FEAD∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,AF=BE=4,FE=AB=8,AM=EM=mFM=m-4RtFEM中,根据勾股定理,即解得m=10,MD=AD-AM=16-10=6,RtMDC中,MC=故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.4、【分析】根据多边形的内角和公式(n−2)•180°以及外角和定理列出方程,然后求解即可.【详解】解:设这个多边形的边数是n
    根据题意得,(n−2)•180°=2×360°,
    解得n=6.
    答:这个多边形的边数是6.
    故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.5、【分析】先根据矩形的性质证明△ABC是等边三角形,得到,则,然后根据勾股定理求出,最后根据矩形面积公式求解即可.【详解】:如图所示,在矩形ABCD中,∠AOB=60°,∵四边形ABCD是矩形,∴∠ABC=90°,∴△ABC是等边三角形,故答案为:【点睛】本题主要考查了矩形的性质,勾股定理,等边三角形的性质与判定,解题的关键在于能够熟练掌握矩形的性质.三、解答题1、(1)60;(2)40°.【分析】(1)根据四边形内角和为360°解决问题;(2)由CE//AD推出∠DCE+∠D=180°,所以∠DCE=40°,根据CE平分∠BCD,推出∠BCD=80°,再根据四边形内角和为360°求出∠B度数;【详解】(1)∵∠A=100°,∠D=140°,∴∠B=∠C=60°,故答案为60;(2)∵CE//ADDCE+∠D=180°,∴∠DCE=40°,CE平分∠BCD∴∠BCD=80°,∴∠B=360°﹣(100°+140°+80°)=40°.【点睛】本题考查了多边形内角与外角以及平行线的性质,熟练运用多边形内角性质和平行线的性质是解题的关键.2、【分析】根据平行四边形的性质可得勾股定理求得,进而求得【详解】解:四边形是平行四边形 ABAC中,中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.3、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标【分析】(1)过点DDEy轴于EPFy轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点Dn,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PFED=FA,再证四边形AFPB为矩形,得出点Dn,14),根据点D在直线y=2x+6上,求出n=4即可;(2)直线y=2xb过点(3,0),求出b =-6,设点Dx, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可【详解】解:(1)过点DDEy轴于EPFy轴于FD点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,x=ny=2n+6,∴点Dn,2n+6),∵△APD是等腰直角三角形,DA=AP,∠DAP=90°,∴∠DAE+∠FAP=180°-∠DAP=90°,DEy轴,PFy轴,∴∠DEA=∠AFP=90°,∴∠EDA+∠DAE=90°,∴∠EDA=∠FAP在△EDA和△FAP中,∴△EDA≌△FAP(AAS),AE=PFED=FA∵四边形OABC为矩形,B的坐标为(8,6),AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,∵∠AFP=90°,∴四边形AFPB为矩形,PF=AB=8,EA=FP=8,OE=OA+AE=6+8=14,∴点Dn,14),∵点D在直线y=2x+6上,∴14=2n+6,,n=4,∴点D(4,14);
     (2)直线y=2xb过点(3,0),∴0=6+bb =-6,∴直线y=2x-6,设点Dx, 2x-6),过点DEFy轴,交y轴于E,交CB延长线于F要使△ADP为等腰直角三角形,当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,∴∠ADE+∠FDP=180°-∠ADP=90°,DEy轴,PFy轴,∴∠DEA=∠AFP=90°,∴∠EDA+∠DAE=90°,∴∠EAD=∠FDP在△EDA和△FPD中,∴△EDA≌△FPD(AAS),AE=DF=2x-6-8=2x-14,ED=FP=x∵四边形OABC为矩形,AB=OC=8,OA=BC=6,∴∠OCF=90°,∴四边形OCFE为矩形,EF=OC=8,DE+DF=x+2x-14=8,解得x=∴点D
     当∠APD=90°,AP=DP,△ADP为等腰直角三角形,∴∠APB+∠DPF=90°,DDF⊥射线CBF∴∠DFP=90°,∵四边形OABC为矩形,AB=OC=8,OA=CB=6,∠ABP=90°,∴∠BAP+∠APB=90°,∴∠BAP=∠FPD在△ABP和△PFD中,∴△ABP≌△PFD(AAS),BP=FD=x-8,AB=PF=8,CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,解得x=∴点D
     当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,∴∠EAD +∠PAF=90°,DDE⊥y轴于E,过PPFy轴于F∴∠DEA=∠PFA=90°,∴∠FAP+∠FPA=90°,∴∠FPA=∠EAD∵四边形OABC为矩形,AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,∵∠PFA=90°,∴四边形AFPB为矩形,PF=AB=8,在△APF和△DAE中,∴△APF≌△DAE(AAS),FP=AE=8,AF=DE=6-m,OE=OA+AE=6+8=14,解得:PCm≥0,AF=6-m≤6<10,∴此种情况不成立;
     综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标【点睛】本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.4、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: □ABCD BEDF
     AE=CFAE//CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.5、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四边形,所以BD=12cm,则BO=DO=6cm,故有6-t=2t,即可求得t值;
    (2)若是菱形,则AC垂直于BD,即有,故AB可求;
    (3)根据四边形AECF是菱形,求得,根据平行四边形的性质得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到结论.【详解】解:(1)∵四边形ABCD为平行四边形,AOOCEOOFBOOD=6cm∴当t为2秒时,四边形AECF是平行四边形;(2)若四边形AECF是菱形,则∴当AB时,平行四边形是菱形;(3)由(1)(2)可知当t=2sAB=时,四边形AECF是菱形,EO=6−t=4,EF=8,∴菱形AECF的面积=【点睛】本题考查了平行四边形的判定和性质和菱形的判定和性质,勾股定理,菱形的面积的计算. 

    相关试卷

    初中北京课改版第十五章 四边形综合与测试随堂练习题:

    这是一份初中北京课改版第十五章 四边形综合与测试随堂练习题,共25页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试测试题,共29页。

    北京课改版八年级下册第十五章 四边形综合与测试练习题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习题,共22页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map