北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共21页。试卷主要包含了下列图形中,是中心对称图形的是,以下分别是回收等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )A.25° B.20° C.15° D.10°2、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )A. B. C. D.3、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为( )
A.30° B.36° C.37.5° D.45°4、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).A.4 B.10 C.6 D.85、下列图形中,是中心对称图形的是( )A. B. C. D.6、四边形的内角和与外角和的数量关系,正确的是( )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等7、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A. B. C. D.8、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )A. B. C. D.9、下列图形中,既是轴对称图形又是中心对称图形的是( ).A. B.C. D.10、下列图形中,不是中心对称图形的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点P(m,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.2、菱形ABCD的周长为,对角线AC和BD相交于点O,AO:BO=1:2,则菱形ABCD的面积为________.3、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.4、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.5、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.三、解答题(5小题,每小题10分,共计50分)1、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE2、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.3、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.4、如图:在中,,,点为的中点,点为直线上的动点(不与点,重合),连接,,以为边在的上方作等边,连接.(1)是________三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.5、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形. -参考答案-一、单选题1、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.2、B【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.3、C【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴ ∴ ∵OB=EB,∴ ∴ ∵点O为对角线BD的中点,∴ 和中 ∴∴ ∵EG⊥FG,即 ∴ ∴ ∴ 故选:C.【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.4、B【分析】根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点P,D分别是AF,AB的中点,∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.5、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.7、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.8、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.9、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.二、填空题1、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y).【详解】解:因为点P(m,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,即m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.2、4【分析】根据菱形的性质求得边长,根据AO:BO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.【详解】解:如图四边形是菱形,菱形ABCD的周长为, AO:BO=1:2,故答案为:4【点睛】本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.3、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.4、菱形【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【详解】解:图象如图所示:
∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.5、【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.【详解】解:根据两组对边分别平行的四边形是平行四边形可知:∵AB//CD,BC//AD,∴四边形ABCD为平行四边形.故答案为://.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题1、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.【详解】解:四边形ABCD是矩形,,,,,,在和中, .【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.2、见解析.【分析】先证明 再证明EF是△CDB的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.3、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,,,,在中, ,根据题意,,根据平行线间的距离处处相等, .答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键.4、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明△OBC是等边三角形;
(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到.【详解】(1)∵∠ACB=90°,∠A=30°,O是AB的中点,∴,∴△OBC是等边三角形,故答案为:等边;(2)由(1)可知,,,是等边三角形,,,,即,在和中,,;(3)成立,证明:由(1)可知,,,是等边三角形,,,,即,在和中,,.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.5、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.【详解】(1)答案如下图所示:
分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.(2)证明:点是AB与其垂直平分线l的交点,点是AB的中点,是Rt△ABC上的斜边的中线,,DE、DF分别是ADC,∠BDC的角平分线,,, , ,, , , 在四边形CEDF中,, 四边形CEDF是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共28页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试课时作业,共30页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试随堂练习题,共26页。