搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形专题练习试题(含答案解析)

    2021-2022学年度京改版八年级数学下册第十五章四边形专题练习试题(含答案解析)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形专题练习试题(含答案解析)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形专题练习试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级下册第十五章 四边形综合与测试同步测试题

    展开

    这是一份数学八年级下册第十五章 四边形综合与测试同步测试题,共28页。试卷主要包含了下列说法中,不正确的是,下列图形中,是中心对称图形的是,下列图案中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为(  )

    A.30° B.36° C.37.5° D.45°
    2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是( )

    A.5 B.6 C.8 D.10
    3、下列测量方案中,能确定四边形门框为矩形的是( )
    A.测量对角线是否互相平分 B.测量两组对边是否分别相等
    C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
    4、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为( )
    A.46.5cm B.22.5cm C.23.25cm D.以上都不对
    5、下列说法中,不正确的是( )
    A.四个角都相等的四边形是矩形
    B.对角线互相平分且平分每一组对角的四边形是菱形
    C.正方形的对角线所在的直线是它的对称轴
    D.一组对边相等,另一组对边平行的四边形是平行四边形
    6、下列图标中,既是中心对称图形又是轴对称图形的是( )
    A. B. C. D.
    7、下列图形中,是中心对称图形的是( )
    A. B. C. D.
    8、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )

    A.180° B.220° C.240° D.260°
    9、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    10、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、正方形的一条对角线长为4,则这个正方形面积是_________.
    2、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.
    3、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.
    4、在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC的长为_____.
    5、一个多边形的内角和为1080°,则它是______边形.
    三、解答题(5小题,每小题10分,共计50分)
    1、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.

    (2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由.
    (3)如图c,如果题目中的矩形变为正方形,结论又应变为什么?说明理由.
    2、(探究发现)
    (1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是   .
    (类比应用)
    (2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.
    (拓展延伸)
    (3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.

    3、如图,在Rt△ABC中,∠ACB=90°.

    (1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);
    (2)求证:四边形CEDF是矩形.
    4、已知:在中,点、点、点分别是、、的中点,连接、.
    (1)如图1,若,求证:四边形为菱形;
    (2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.


    5、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容.

    结合图①,写出完整的证明过程
    (应用)如图②,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 .
    (拓展)如图③,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,∠C=45°,则五边形ABFEG的周长为 .


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.
    【详解】
    ∵矩形ABCD


    ∵OB=EB,


    ∵点O为对角线BD的中点,

    和中



    ∵EG⊥FG,即



    故选:C.
    【点睛】
    本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.
    2、A
    【分析】
    由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.
    【详解】
    解:∵四边形ABCD是菱形,AC=6,BD=8,
    ∴OA=OC=3,OB=OD=4,AO⊥BO,
    在Rt△AOB中,由勾股定理得:,
    故选:A.
    【点睛】
    本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.
    3、D
    【分析】
    由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
    【详解】
    解:A、∵对角线互相平分的四边形是平行四边形,
    ∴对角线互相平分且相等的四边形才是矩形,
    ∴选项A不符合题意;
    B、∵两组对边分别相等是平行四边形,
    ∴选项B不符合题意;
    C、∵对角线互相平分且相等的四边形才是矩形,
    ∴对角线相等的四边形不是矩形,
    ∴选项C不符合题意;
    D、∵对角线交点到四个顶点的距离都相等,
    ∴对角线互相平分且相等,
    ∵对角线互相平分且相等的四边形是矩形,
    ∴选项D符合题意;
    故选:D.
    【点睛】
    本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
    4、C
    【分析】
    如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.
    【详解】
    解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,
    ∴,,,
    ∴△DEF的周长,
    同理可得:△GHI的周长,
    ∴第三次作中位线得到的三角形周长为,
    ∴第四次作中位线得到的三角形周长为
    ∴第三次作中位线得到的三角形周长为
    ∴这五个新三角形的周长之和为,
    故选C.

    【点睛】
    本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.
    5、D
    【分析】
    根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
    【详解】
    解:A、四个角都相等的四边形是矩形,说法正确;
    B、正方形的对角线所在的直线是它的对称轴,说法正确;
    C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
    D、一组对边相等且平行的四边形是平行四边形,原说法错误;
    故选:D.
    【点睛】
    本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
    6、B
    【分析】
    由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    7、B
    【分析】
    根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
    【详解】
    选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
    选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
    故选:.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    8、C
    【分析】
    根据四边形内角和为360°及等边三角形的性质可直接进行求解.
    【详解】
    解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
    ∴;
    故选C.
    【点睛】
    本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
    9、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    10、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    二、填空题
    1、8
    【分析】
    正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.
    【详解】
    解:设边长为,对角线为


    故答案为:.
    【点睛】
    本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.
    2、10
    【分析】
    如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.
    【详解】
    解:如图,由题意得:四边形为矩形,


    是等边三角形,


    故答案为:
    【点睛】
    本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.
    3、
    【分析】
    根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.
    【详解】
    解:根据两组对边分别平行的四边形是平行四边形可知:
    ∵AB//CD,BC//AD,
    ∴四边形ABCD为平行四边形.
    故答案为://.
    【点睛】
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    4、10或14或10
    【分析】
    利用BF平分∠ABC, CE平分∠BCD,以及平行关系,分别求出、,通过和是否相交,分两类情况讨论,最后通过边之间的关系,求出的长即可.
    【详解】
    解: 四边形ABCD是平行四边形,
    ,,,
    ,,
    BF平分∠ABC, CE平分∠BCD,
    ,,
    ,,
    由等角对等边可知:,,
    情况1:当与相交时,如下图所示:





    情况2:当与不相交时,如下图所示:





    故答案为:10或14.
    【点睛】
    本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据和是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况.
    5、八
    【分析】
    根据多边形的内角和公式求解即可.n边形的内角的和等于: (n大于等于3且n为整数).
    【详解】
    解:设该多边形的边数为n,
    根据题意,得,
    解得,
    ∴这个多边形为八边形,
    故答案为:八.
    【点睛】
    此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
    三、解答题
    1、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析
    【分析】
    (1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;
    (2)先证明四边形CODP是平行四边形,再由菱形的性质可得∠DOC=90°,即可证明平行四边形OCDP是矩形;
    (3)先证明四边形CODP是平行四边形,再由正方形的性质可得BD⊥AC,DO=OC,即可证明平行四边形OCDP是正方形;
    【详解】
    解:(1)四边形CODP是菱形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是矩形,
    ∴OD=OC,
    ∴平行四边形OCDP是菱形;
    (2)四边形CODP是矩形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是菱形,
    ∴BD⊥AC,
    ∴∠DOC=90°,
    ∴平行四边形OCDP是矩形;
    (3)四边形CODP是正方形,理由如下:
    ∵DP∥OC,且DP=OC,
    ∴四边形CODP是平行四边形,
    又∵四边形ABCD是正方形,
    ∴BD⊥AC,DO=OC,
    ∴∠DOC=90°,平行四边形CODP是菱形,
    ∴菱形OCDP是正方形.
    【点睛】
    本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件.
    2、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或
    【分析】
    (1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;
    (2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;
    (3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.
    【详解】
    (1)

    如图1,∵AB=AC,∠BAC=90°,
    ∴∠B=∠C=45°,
    ∵D为BC中点,
    ∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,
    ∴∠ADB=∠ADF+∠BDF=90°,
    ∵∠EDF=∠ADE+∠ADF=90°,
    ∴∠BDF=∠ADE,
    ∵BD=AD,∠B=∠CAD=45°,
    ∴△BDF≌△ADE(ASA),
    ∴BF=AE,
    ∴AB=AF+BF=AF+AE;
    故答案为:AB=AF+AE;
    (2)

    AE+AF=AB.理由是:
    如图2,取AB中点G,连接DG,
    ∵点G是斜边中点,
    ∴DG=AG=BG=AB,
    ∵AB=AC,∠BAC=120°,点D为BC的中点,
    ∴∠BAD=∠CAD=60°,
    ∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,
    又∵∠FAD+∠ADE=∠FDE=60°,
    ∴∠GDF=∠ADE,
    ∵DG=AG,∠BAD=60°,
    ∴△ADG为等边三角形,
    ∴∠AGD=∠CAD=60°,GD=AD,
    ∴△GDF≌△ADE(ASA),
    ∴GF=AE,
    ∴AG=AB=AF+FG=AE+AF,
    ∴AE+AF=AB;
    (3)

    当点E在线段AC上时,如图3,取AC的中点H,连接DH,
    当AB=AC=5,CE=1,∠EDF=60°时,
    AE=4,此时F在BA的延长线上,
    同(2)可得:△ADF≌△HDE (ASA),
    ∴AF=HE,
    ∵AH=CH=AC=,CE=1,
    ∴,

    当点E在AC延长线上时,如图4,
    同理可得:;
    综上:AF的长为或.
    【点睛】
    本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键
    3、(1)见解析(2)见解析
    【分析】
    (1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.
    (2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明与都是,最后加上,即可证明结论.
    【详解】
    (1)答案如下图所示:


    分别以A、B两点为圆心,以大于长为半径画弧,连接弧的交点的直线即为垂直平分线l,其与AB的交点为D,以点D为圆心,适当长为半径画弧,分别交DA于点M,交CD于点N,交BD于点T,然后分别以点M,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交AC于点E,同理分别以点T,N为圆心,大于为半径画弧,连接两弧交点与D点的连线交BC于点F.
    (2)证明:点是AB与其垂直平分线l的交点,
    点是AB的中点,
    是Rt△ABC上的斜边的中线,

    DE、DF分别是ADC,∠BDC的角平分线,
    ,,





    在四边形CEDF中,,
    四边形CEDF是矩形.
    【点睛】
    本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.
    4、(1)证明见详解;(2)与面积相等的平行四边形有、、、.
    【分析】
    (1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;
    (2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.
    【详解】
    解:(1)∵D、E、F分别是AB、AC、BC的中点,
    ∴,,,,
    ∴四边形DECF为平行四边形,
    ∵,

    ∴四边形DECF为菱形;
    (2)∵D、E、F分别是AB、AC、BC的中点,
    ∴,,,,, ,
    且,,,
    ∴四边形DEFB、DECF、ADFE是平行四边形,
    ∴,
    ∵,,
    ∴四边形EGCF是平行四边形,
    ∴,
    ∴,

    ∴与面积相等的平行四边形有、、、.
    【点睛】
    题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.
    5、【教材呈现】见解析;【应用】 ;【拓展】
    【分析】
    (教材呈现)由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
    (应用)过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF、EF的长,
    (拓展)过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=3,由勾股定理可求AE=AF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长.
    【详解】
    解:(教材呈现)∵四边形ABCD是矩形,
    ∴AECF,
    ∴∠EAO=∠FCO,
    ∵EF垂直平分AC,
    ∴AO=CO,∠AOE=∠COF=90°,
    ∴△AOE≌△COF(ASA)
    ∴OE=OF,
    又∵AO=CO,
    ∴四边形AFCE是平行四边形,
    ∵EF⊥AC,
    ∴平行四边形AFCE是菱形;
    (应用)如图,连接AC、EC
    由(教材呈现)可得平行四边形AFCE是菱形,

    ∴AF=CF,∠AFE=∠EFC,
    ∵AF2=BF2+AB2,
    ∴(5−BF)2=BF2+16,
    ∴BF=,
    ∴AF=CF=,
    ∵AB⊥BC,
    ∴△ABC是直角三角形
    ∴AC=
    ∵S四边形AFCE=,

    ∴EF=,
    故答案为:.
    (拓展)如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,

    ∵四边形ABCD是平行四边形,∠C=45°,
    ∴∠ABC=135°,
    ∴∠ABN=45°,
    ∵AN⊥BC,
    ∴∠ABN=∠BAN=45°,
    ∴△ANB是等腰直角三角形
    ∵AN2+BN2=AB2,AN=BN
    ∴AN=BN=3,NC=6+3=9
    ∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,
    ∴AF=CF,∠AFE=∠EFC,
    ∵ADBC,
    ∴∠AEF=∠EFC=∠AFE,
    ∴AE=AF,
    ∵AF2=AN2+NF2,
    ∴AF2=9+(9−AF)2,
    ∴AF=5,
    ∴AE=AF=5,
    ∵ANMF,ADBC,
    ∴四边形ANFM是平行四边形,
    ∵AN⊥BC,
    ∴四边形ANFM是矩形,
    ∴AN=MF=3,
    ∴AM==4,
    ∴ME=AE−AM=1,
    ∴EF==,
    ∵BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1
    ∴五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+++1=
    故答案为:.
    【点睛】
    本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键.

    相关试卷

    初中数学第十五章 四边形综合与测试精练:

    这是一份初中数学第十五章 四边形综合与测试精练,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共24页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共28页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map