终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练京改版八年级数学下册第十四章一次函数综合测试试卷

    立即下载
    加入资料篮
    2022年最新强化训练京改版八年级数学下册第十四章一次函数综合测试试卷第1页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数综合测试试卷第2页
    2022年最新强化训练京改版八年级数学下册第十四章一次函数综合测试试卷第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试课堂检测

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共30页。试卷主要包含了已知点P,已知点,已知点A,点P在第二象限内,P点到x等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数综合测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是(  )
    A. B. C. D.
    2、关于函数有下列结论,其中正确的是( )
    A.图象经过点
    B.若、在图象上,则
    C.当时,
    D.图象向上平移1个单位长度得解析式为
    3、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    4、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为(  )
    A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
    5、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为(  )

    A. B. C. D.
    6、已知点(﹣1,y1)、(2,y2)在函数y=﹣2x+1图象上,则y1与y2的大小关系是( )
    A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定
    7、已知点A(a+9,2a+6)在y轴上,a的值为(  )
    A.﹣9 B.9 C.3 D.﹣3
    8、已知点A(x+2,x﹣3)在y轴上,则x的值为(  )
    A.﹣2 B.3 C.0 D.﹣3
    9、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为(  )
    A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
    10、如图,直线与分别交轴于点,,则不等式的解集为( ).

    A. B. C. D.或
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、任何一个以x为未知数的一元一次不等式都可以变形为_____(a≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.
    2、关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.
    3、直线y2x3与x轴的交点坐标是______,与y轴的交点坐标是______.
    4、平面直角坐标系中,点O为坐标原点,点A(4,2)、点B(0,5),直线y=kx﹣2k+1恰好将△ABO平均分成面积相等的两部分,则k的值是_________.
    5、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点.若是等腰三角形,点P的坐标是______________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.

    (1)求证:△AOB≌△COD;
    (2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
    (3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
    2、在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.
    (1)k的值是    ;
    (2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
    ①如图,点D的坐标为(6,0),点E的坐标为(0,1),若四边形OECD的面积是9,求点C的坐标;
    ②当CE平行于x轴,CD平行于y轴时,若四边形OECD的周长是10,请直接写出点C的坐标.

    3、如图,在平面直角坐标系xoy中,的顶点O是坐标原点,点A在第一象限,点B在x轴的正半轴上,且,,点C是直线OC上一点,且在第一象限,,满足关系式.
    (1)请直接写出点A的坐标;
    (2)点P是线段OB上的一个动点(点P不与点O重合),过点P的直线l与x轴垂直,直线l交边或边AB于点Q,交OC于点R.设点P的横坐标为t,线段QR的长度为m.当时,直线l恰好过点C.
    ①求直线OC的函数表达式;
    ②当时,请直接写出点P的坐标;
    ③当直线RQ与直线OC所组成的角被射线RA平分时,请直接写出t的值.

    4、某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5 L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.
    (1)机器每分钟加油量为 L,机器工作的过程中每分钟耗油量为 L;
    (2)求机器工作时y关于x的函数解析式;
    (3)直接写出油箱中油量为油箱容积的一半时x的值.

    5、A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨.已知从A地、B地到C地、D地的运价如下表:

    到C地
    到D地
    从A地果园运出
    每吨15元
    每吨9元
    从B地果园运出
    每吨10元
    每吨12元
    (1)若从A地果园运到C地的苹果为10吨,则从A地果园运到D地的苹果为 吨,从B地果园运到C地的苹果为 吨,从B地果园运到D地的苹果为 吨,总运输费用为 元.
    (2)若从A地果园运到C地的苹果为x吨,求从A、B两地将苹果运到C、D两地的运输总费用.
    (3)能否设计一个运输方案,使得运费最少?如果能,请你写出你的方案,最少运费是多少?

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.
    【详解】
    解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),
    ∴关于x,y的二元一次方程组的解是.
    故选B.
    【点睛】
    本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.
    2、D
    【解析】
    【分析】
    根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
    【详解】
    解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
    B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
    C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
    D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
    故选D.
    【点睛】
    本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
    3、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    4、B
    【解析】
    【分析】
    根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
    【详解】
    解:∵点P(m+3,2m+4)在x轴上,
    ∴2m+4=0,
    解得:m=-2,
    ∴m+3=-2+3=1,
    ∴点P的坐标为(1,0).
    故选:B.
    【点睛】
    本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
    5、D
    【解析】
    【分析】
    由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.
    【详解】
    解:∵一次函数y=-x+2中,
    令x=0得:y=2;令y=0,解得x=5,
    ∴B的坐标是(0,2),A的坐标是(5,0).
    若∠BAC=90°,如图1,作CE⊥x轴于点E,
    ∵∠BAC=90°,
    ∴∠OAB+∠CAE=90°,
    又∵∠CAE+∠ACE=90°,
    ∴∠ACE=∠BAO.
    在△ABO与△CAE中,,
    ∴△ABO≌△CAE(AAS),
    ∴OB=AE=2,OA=CE=5,
    ∴OE=OA+AE=2+5=7.
    则C的坐标是(7,5).
    设直线BC的解析式是y=kx+b,
    根据题意得:,解得,
    ∴直线BC的解析式是y=x+2.
    故选:D.

    【点睛】
    本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.
    6、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据−1<2即可得出结论.
    【详解】
    解:∵一次函数y=−2x+1中,k=−2<0,
    ∴y随着x的增大而减小.
    ∵点(﹣1,y1)、(2,y2)是一次函数y=−2x+1图象上的两个点,−1<2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象的增减性是解答此题的关键.
    7、A
    【解析】
    【分析】
    根据y轴上点的横坐标为0列式计算即可得解.
    【详解】
    解:∵点A(a+9,2a+6)在y轴上,
    ∴a+9=0,
    解得:a=-9,
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    8、A
    【解析】
    【分析】
    根据y轴上点的横坐标为0列方程求解即可.
    【详解】
    解:∵点A(x+2,x﹣3)在y轴上,
    ∴x+2=0,
    解得x=-2.
    故选:A.
    【点睛】
    本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
    9、C
    【解析】
    【分析】
    点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
    【详解】
    ∵P点到x、y轴的距离分别是4、3,
    ∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
    ∵点P在第二象限内,
    ∴点P的坐标为(-3,4),
    故选:C.
    【点睛】
    本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
    10、C
    【解析】
    【分析】
    观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
    【详解】
    解:由图象可得,
    当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
    当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
    当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
    当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
    故选:C.
    【点睛】
    本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
    二、填空题
    1、 ax+b>0或ax+b0或ax+b0或ax+b-2
    【解析】
    【分析】
    先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.
    【详解】
    解:∵正比例函数中,y随x的增大而增大,
    ∴>0,
    解得.
    故答案为;.
    【点睛】
    本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.
    3、 (,0)##(1.5,0) (0,﹣3)
    【解析】
    【分析】
    分别根据x、y轴上点的坐标特点进行解答即可.
    【详解】
    令y=0,则2x﹣3=0,解得:x,故直线与x轴的交点坐标为:(,0);
    令x=0,则y=﹣3,故直线与y轴的交点坐标为:(0,﹣3).
    故答案为(,0),(0,﹣3).
    【点睛】
    本题考查了x、y轴上点的坐标特点及一次函数图象的性质,熟练掌握一次函数与坐标轴交点问题是解题的关键.
    4、﹣2
    【解析】
    【分析】
    由题意可得直线y=kx﹣2k+1恒过,进而依据直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,代入点B(0,5)即可求解.
    【详解】
    解:如图,

    由,可知当,不论k取何值,,
    即直线y=kx﹣2k+1恒过,
    又因为点O为坐标原点,点A(4,2),可知为OA中点,
    可知当直线y=kx﹣2k+1恒过BC即△ABO中线时恰好将△ABO平均分成面积相等的两部分,
    所以代入点B(0,5)可得:,解得:.
    故答案为:.
    【点睛】
    本题考查一次函数解析式与三角形的综合,熟练掌握三角形的中线平分三角形的面积是解题的关键.
    5、,,,
    【解析】
    【分析】
    利用分类讨论的思想方法分三种情形讨论解答:①,②,③,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论.
    【详解】
    交轴于点,


    令,则,


    直线垂直平分交于点,交轴于点,
    ,点的横坐标为1.

    ①时,如图,

    过点作交轴于点,则,






    同理,.
    ②当时,如图,

    点在的垂直平分线上,
    点的纵坐标为1,

    ③当时,则,如图,



    综上,若是等腰三角形,点的坐标是或或或.
    故答案为:或或或.
    【点睛】
    本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键.
    三、解答题
    1、(1)见解析;(2)见解析;(3)见解析
    【解析】
    【分析】
    (1)根据SAS即可证明△AOB≅△COD;
    (2)过点作CH∥x轴,交BD于点H,得出AB∥CH∥OD,由平行线的性质得∠BAP=∠HCP,由轴得∠DCH=∠ODC=90°,由△AOB≅△COD得OB=OD,故可得∠ODB=45°,从而得出∠CHD=∠CDH=45°,推出CH=CD=AB,根据AAS证明△ABP≅△CHP,得出AP=CP即可得证;
    (3)延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,根据SAS证明△AGM≅△FGE,得出AM=EF,∠AMG=∠GEF,故AM∥EJ,由平行线的性质得出∠MAO=∠AJE,进而推出∠MAO=∠ECO,根据SAS证明△MAO≅△ECO,故OM=OE,∠AOM=∠EOC,即可证明∠OEG=45°.
    【详解】
    (1)∵AB⊥y轴于点,轴于点,
    ∴∠ABO=∠CDO=90°,
    ∵A(-2,6),C(6,2),
    ∴AB=CD=2,OB=OD=6,
    ∴△AOB≅△COD(SAS);
    (2)


    如图2,过点作CH∥x轴,交BD于点H,
    ∴AB∥CH∥OD,
    ∴∠BAP=∠HCP,
    ∵CD⊥x轴,
    ∴∠DCH=∠ODC=90°,
    ∵△AOB≅△COD,
    ∴OB=OD,
    ∴∠ODB=45°,∠CHD=∠ODB=45°,∠CDH=90°-45°=45°,
    ∴CH=CD=AB,
    在△ABP与△CHP中,
    ∠APB=∠CPH∠BAP=∠HCPAB=CH,
    ∴△ABP≅△CHP(AAS),
    ∴AP=CP,即点为AC中点;
    (3)


    如图3,延长EG到,使GM=GE,连接AM,OM,延长EF交于点J,
    ∵AG=GF,∠AGE=∠FGE,GM=GE,
    ∴△AGM≅△FGE(SAS),
    ∴AM=EF,∠AMG=∠GEF,
    ∴AM∥EJ,
    ∴∠MAO=∠AJE,
    ∵EF=EC,
    ∴AM=EC,
    ∵∠AOC=∠CEJ=90°,
    ∴∠AJE+∠EJO=180°,∠EJO+ECO=180°,
    ∴∠AJE=∠ECO,
    ∴∠MAO=∠ECO,
    ∵AO=CO,
    ∴△MAO≅△ECO(SAS),
    OM=OE,∠AOM=∠EOC,
    ∴∠MOE=∠AOC=90°,
    ∴∠MEO=45°,即∠OEG=45°.
    【点睛】
    本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
    2、(1);(2)①;②或.
    【解析】
    【分析】
    (1)把A(8,0)的坐标代入函数解析式即可;
    (2)①由四边形,则在线段上时,如图,利用四边形OECD的面积是9,再列方程解题即可;②分三种情况讨论,如图,当在线段上时, 当在的延长线上时,当在的延长线时,设再利用四边形OECD的周长是10,列方程求解即可.
    【详解】
    解:(1) 直线y=kx+4(k≠0)交x轴于点A(8,0),
    解得:
    故答案为:
    (2)①由(1)得:
    令 则 即

    点D的坐标为(6,0),点E的坐标为(0,1),


    由四边形OECD的面积是9,则在线段上,

    解得: 则

    ②当CE平行于x轴,CD平行于y轴时,
    轴,轴,
    如图,当在线段上时,设


    四边形OECD的周长是10,

    解得: 则

    当在的延长线上时,

    同理可得:

    解得: 则

    当在的延长线时,如图,

    四边形的周长大于,故不符合题意,舍去,
    综上:或.
    【点睛】
    本题考查的是一次函数的性质,坐标与图形,掌握“利用周长与面积列方程”是解本题的关键.
    3、(1)(3,3);(2)①直线OC的函数表达式为;②点P坐标为(,0)或(,0);③t的值为,或
    【解析】
    【分析】
    (1)过A作AD⊥x轴于点D,根据等腰直角三角形的性质得出OD=OA=3,即可得到A坐标为(3,3),;
    (2)①由,且,可得OC=,在中,利用勾股定理求得BC的值,即可得到点C坐标,设出直线OC的函数表达式为y=kx,把(6,2)代入 求出k的值,即可得到直线OC的函数表达式;②先求出直线AB的解析式,由题意点得P(t,0),Q(t,t)或(t,),R(t,),列出方程,即可求得点P坐标;③先求出点H的坐标为(,),再根据面积法求出,最后分两种情况讨论即可.
    【详解】
    (1)过A作AD⊥x轴于点D,

    ∵OB=6,OA=AB,∠OAB=90°,
    ∴AD平分∠OAB,且OD=BD=3,
    ∴∠OAD=∠AOD=45°,
    ∴OD=DA=3,
    ∴A坐标为(3,3),
    故答案为:(3,3);
    (2)①∵,且,
    ∴OC=,
    当时,点P坐标为(6,0),
    ∵直线l恰好过点C,



    点C坐标为(6,2),
    设直线OC的函数表达式为y=kx,把(6,2)代入,
    得:6k=2,
    解得,
    故直线OC的函数表达式为;
    ②设直线OC与直线AB交于点H,直线AB的解析式为,

    ∴,
    ∴,
    ∴直线AB的解析式为,
    ∵点P的横坐标为t,点R在直线上,
    ∴点P(t,0),Q(t,t)或(t,),R(t,),
    ∵线段QR的长度为m,
    ∴或
    当时,或
    解得:或或
    故点P坐标为(,0)或(,0)或(,0);
    ③∵直线AB的解析式为,
    联立,解得,
    ∴点H的坐标为(,),
    ∴,,,
    ∵,
    ∴,
    过点A作AM⊥直线l,AN⊥直线OC,如图:

    则:AM=,
    ∵直线RQ与直线OC所组成的角被射线RA平分,
    AM=AN,
    即=,
    解得或,
    故t的值为或.
    【点睛】
    此题考查等腰直角三角形的性质、求一次函数函数解析式、角平分线的性质、点到直线的距离、勾股定理的应用.作出相应的图形,分类讨论是解答此题的关键.
    4、(1)3,0.5;(2);(3)5或40
    【解析】
    【分析】
    观察图像(1)机器均匀加油30L共用10min,工作50min均匀耗油25L,故可求出每分钟的加油量与耗油量.
    (2)设解析式为,将、代入解出的值,回代求出解析式.
    (3)含油量为一半时分加油和工作耗油两种情况,加油时的解析式为,将分别代入两个解析式,即可求得的值.
    【详解】
    解:(1)每分钟加油量为L;每分钟耗油量为L;
    故答案为:3;0.5.
    (2)设解析式为,将、代

    解得

    (3)加油时的解析式为;工作时解析式为;
    将代入解得,
    故答案为:5或40.
    【点睛】
    本题考查了一次函数解析式.解题的关键与难点在于理解图像中各点的含义.
    5、(1)20,10,30,790;(2);(3)将A果园的苹果全部运到D地时,运费最少,最少运费为710元
    【解析】
    【分析】
    (1)由已知A、B果园和C、D两地的供需关系即可求得A、B果园运到C、D两地苹果的重量,再结合表中的运费计算即可.
    (2)根据已知A、B果园和C、D两地的供需关系即可列出一元一次方程.
    (3)由(2)问所求运输总费用关系式,结合一次函数的性质即可得出将A果园的苹果全部运到D地时,运费最少,最少运费为710元.
    【详解】
    解:(1)∵A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨
    ∴从A地果园运到D地的苹果为吨,
    ∴从B地果园运到C地的苹果为吨,
    ∴从B地果园运到D地的苹果为吨,
    ∴总运费为元;
    (2)A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为吨;
    从B果园运到C地的苹果为吨,从B果园运到D地的苹果为吨;
    总运输费用为:
    (3)由(2)可知从A地果园运到C地的苹果为x吨时总运费,且
    ∵为一次函数且k>0,y随x的增大而增大
    ∴当x=0时,取最小值
    ∴将x=0代入
    即送往C地的A果园苹果为0,
    ∴将A果园的苹果全部运到D地时,运费最少,最少运费为710元.
    【点睛】
    本题考查了一次函数的分配问题,就是在求函数的最值,我们应先求出函数的表达式,并确定其增减性,再根据题目条件确定出自变量的取值范围,然后结合增减性确定出最大值或最小值.

    相关试卷

    数学北京课改版第十四章 一次函数综合与测试课后复习题:

    这是一份数学北京课改版第十四章 一次函数综合与测试课后复习题,共29页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共26页。试卷主要包含了函数的图象如下图所示,一次函数y=mx﹣n,已知点等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共19页。试卷主要包含了点在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map