终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新京改版八年级数学下册第十四章一次函数定向攻克试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新京改版八年级数学下册第十四章一次函数定向攻克试题(含详细解析)第1页
    2021-2022学年最新京改版八年级数学下册第十四章一次函数定向攻克试题(含详细解析)第2页
    2021-2022学年最新京改版八年级数学下册第十四章一次函数定向攻克试题(含详细解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共28页。试卷主要包含了已知一次函数与一次函数中,函数,在平面直角坐标系中,点P等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
    有下列三个命题:
    (1)若,,则,;
    (2)若,则;
    (3)对任意点,,,均有成立.
    其中正确命题的个数为( )
    A.0个 B.1个 C.2个 D.3个
    2、一次函数y=kx+b的图象如图所示,则下列说法错误的是(  )

    A.y随x的增大而减小
    B.k<0,b<0
    C.当x>4时,y<0
    D.图象向下平移2个单位得y=﹣x的图象
    3、点A(-3,1)到y轴的距离是(  )个单位长度.
    A.-3 B.1 C.-1 D.3
    4、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:
    表1:
    x


    0
    1




    3
    4


    表2:
    x


    0
    1



    5
    4
    3


    则关于x的不等式的解集是( )
    A. B. C. D.
    5、在平面直角坐标系中,点P(-2,3)在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    6、下面关于函数的三种表示方法叙述错误的是( )
    A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
    B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
    C.用解析式法表示函数关系,可以方便地计算函数值
    D.任何函数关系都可以用上述三种方法来表示
    7、下列函数中,y随x的增大而减小的函数是( )
    A. B.y=6﹣2x C. D.y=﹣6+2x
    8、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )

    A.①②③ B.①②④ C.③④ D.①③④
    9、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
    A.4个 B.5个 C.6个 D.7个
    10、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )
    A.第一象限 B.第二象限 C.直线y=x上 D.坐标轴上
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在函数的图象上有,,三个点,则,,的大小关系是_____________.(用“>”连接)
    2、函数的定义域是_____.
    3、平面直角坐标系中,已知点,,且ABx轴,若点到轴的距离是到轴距离的2倍,则点的坐标为________.
    4、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点.若是等腰三角形,点P的坐标是______________.

    5、已知一次函数的图象经过点和,则_______(填“>”“<”或“=”)
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,平面直角坐标系中,的顶点都在格点上,已知点的坐标是.

    (1)点的坐标是______;
    (2)画出关于轴对称的,其中点、、的对应点分别为点、、;
    (3)直接写出的面积为______.
    2、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:

    (1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;
    (2)求当王亮距离李刚家1.5千米时,的值.
    3、如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.
    (1)A点坐标为   ,B点坐标为   ;
    (2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.
    (3)在(2)的基础上若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.

    4、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.
    (1)请直接写出C、D两点的坐标:点C ,点D ;
    (2)当BF=BC时,连接FE.
    ①求点F的坐标;
    ②求此时△BEF的面积.

    5、如图所示,平面直角坐标系中,直线AB交x轴于点B(﹣3,0),交y轴于点A(0,1),直线x=﹣1交AB于点D,P是直线x=﹣1上一动点,且在点D上方,设P(﹣1,n).
    (1)求直线AB的解析式;
    (2)求△ABP的面积(用含n的代数式表示);
    (3)点C是y轴上一点,当S△ABP=2时,△BPC是等腰三角形,
    ①满足条件的点C的个数是________个(直接写出结果);
    ②当BP为等腰三角形的底边时,求点C的坐标.


    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据新的运算定义分别判断每个命题后即可确定正确的选项.
    【详解】
    解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
    ∴①正确;
    (2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
    ∵A⊕B=B⊕C,
    ∴x1+x2=x2+x3,y1+y2=y2+y3,
    ∴x1=x3,y1=y3,
    ∴A=C,
    ∴②正确.
    (3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
    ∴(A⊕B)⊕C=A⊕(B⊕C),
    ∴③正确.
    正确的有3个,
    故选:D.
    【点睛】
    本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    2、B
    【解析】
    【分析】
    由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
    【详解】
    解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
    一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
    由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
    由函数图象经过
    ,解得:
    所以一次函数的解析式为:
    把向下平移2个单位长度得:,故D不符合题意;
    故选B
    【点睛】
    本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
    3、D
    【解析】
    【分析】
    由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.
    【详解】
    解:由题意知到轴的距离为
    到轴的距离是个单位长度
    故选D.
    【点睛】
    本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.
    4、D
    【解析】
    【分析】
    用待定系数法求出和的表达式,再解不等式即可得出答案.
    【详解】
    由表得:,在一次函数上,
    ∴,
    解得:,
    ∴,
    ,在一次函数上,
    ∴,
    解得:,
    ∴,
    ∴为,
    解得:.
    故选:D.
    【点睛】
    本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.
    5、B
    【解析】
    【分析】
    根据点横纵坐标的正负分析得到答案.
    【详解】
    解:点P(-2,3)在第二象限,
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中各象限内点的坐标特点,熟记各象限内横纵坐标的正负是解题的关键.
    6、D
    【解析】
    【分析】
    根据函数三种表示方法的特点即可作出判断.
    【详解】
    前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
    故选:D
    【点睛】
    本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
    7、B
    【解析】
    【分析】
    根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.
    【详解】
    解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;
    B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;
    C、∵k=>0,∴y随x的增大而增大,故本选项错误;
    D、∵k=2>0,∴y随x的增大而增大,故本选项错误.
    故选:B.
    【点睛】
    本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.
    8、D
    【解析】
    【分析】
    根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
    【详解】
    解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
    火车的长度是150米,故②错误;
    整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
    隧道长是:45×30-150=1200(米),故④正确.
    故选:D.
    【点睛】
    本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
    9、A
    【解析】
    【分析】
    由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
    【详解】
    解:设直线AB的解析式为y=kx+b,
    ∵一次函数图象与直线y=x+平行,
    ∴k=,
    又∵所求直线过点(﹣1,﹣25),
    ∴﹣25=×(﹣1)+b,
    解得b=﹣,
    ∴直线AB为y=x﹣,
    ∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
    设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
    因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
    解得:≤N≤4,
    所以N=1,2,3,4共4个,
    故选:A.
    【点睛】
    本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
    10、B
    【解析】
    【分析】
    对取不同值进行验证分析即可.
    【详解】
    解:A、当,点P在第一象限,故A不符合题意.
    B、由于横坐标为,点P一定不在第二象限,故B符合题意.
    C、当,点P在直线y=x上,故C不符合题意.
    D、当时,点P在x轴上,故D不符合题意.
    故选:B.
    【点睛】
    本题主要是考查了横纵坐标的取值与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    根据一次函数图象的增减性来比较、、三点的纵坐标的大小.
    【详解】
    解:一次函数解析式中的,
    该函数图象上的点的值随的增大而减小.
    又,

    故答案为:.
    【点睛】
    本题考查了一次函数图象上点坐标特征,一次函数的增减性,解题的关键是掌握一次函数的增减性,即在中,当时随的而增大,当时,随的增大而减小.
    2、
    【解析】
    【分析】
    函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.
    【详解】
    解:根据题意得:3x+6≥0,
    解得x≥﹣2.
    故答案为:x≥﹣2.
    【点睛】
    本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    3、或
    【解析】
    【分析】
    根据AB平行x轴,两点的纵坐标相同,得出y=2,再根据点到轴的距离是到轴距离的2倍,得出即可.
    【详解】
    解:∵点,,且ABx轴,
    ∴y=2,
    ∵点到轴的距离是到轴距离的2倍,
    ∴,
    ∴,
    ∴B(-4,2)或(4,2).
    故答案为(-4,2)或(4,2).
    【点睛】
    本题考查两点组成线段与坐标轴的位置关系,点到两轴的距离,掌握两点组成线段与坐标轴的位置关系,与x轴平行,两点纵坐标相同,与y轴平行,两点的横坐标相同,点到两轴的距离,到x轴的距离为|y|,到y轴的距离是|x|是解题关键.
    4、,,,
    【解析】
    【分析】
    利用分类讨论的思想方法分三种情形讨论解答:①,②,③,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论.
    【详解】
    交轴于点,


    令,则,


    直线垂直平分交于点,交轴于点,
    ,点的横坐标为1.

    ①时,如图,

    过点作交轴于点,则,






    同理,.
    ②当时,如图,

    点在的垂直平分线上,
    点的纵坐标为1,

    ③当时,则,如图,



    综上,若是等腰三角形,点的坐标是或或或.
    故答案为:或或或.
    【点睛】
    本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键.
    5、>
    【解析】
    【分析】
    根据一次函数的性质,当k<0时,y随x的增大而减小,判断即可.
    【详解】
    ∵一次函数的图象经过点和,且k<0,
    ∴k<0,
    ∵-2<3,
    ∴>,
    故答案为:>.
    【点睛】
    本题考查了一次函数的基本性质,灵活运用性质是解题的关键.
    三、解答题
    1、(1)2,0;(2)见解析;(3)12
    【解析】
    【分析】
    (1)根据平面直角坐标系写出点的坐标即可;
    (2)找到点A,B,C关于轴对称的对应点A',B',C',顺次连接A',B',C',则即为所求;
    (3)根据正方形的面积减去三个三角形的面积即可求得的面积
    【详解】
    (1)根据平面直角坐标系可得的坐标为2,0,
    故答案为:2,0
    (2)如图所示,找到点A,B,C关于轴对称的对应点A',B',C',顺次连接A',B',C',则即为所求;

    (3)的面积为6×6-12×6×3-12×3×2-12×4×6=12
    故答案为:12
    【点睛】
    本题考查了坐标与图形,轴对称的性质与作图,掌握轴对称的性质是解题的关键.
    2、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;(2)t=7.5.
    【解析】
    【分析】
    (1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n,函数过点(15,2)(30,6.5)代入得方程组15m+n=230m+n=6.5,然后解方程组即可;
    (2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.
    【详解】
    解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=mt+n
    函数过点(15,2)(30,6.5)代入得:
    15m+n=230m+n=6.5,
    解得:m=0.3n=-2.5,
    ∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;s=0.3t-2.5;
    (2)设修车之前解析式为s=kt,代入(10,2)得:
    2=10k,
    解得k=15,
    ∴s=15t,
    当s=1.5时,15t=1.5,
    解得t=7.5分.
    【点睛】
    本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.
    3、(1)(6,0)、(0,8);(2)y=8﹣2x;(3)点Q的坐标为:(0,)或(,0)或(,0)或(0,).
    【解析】
    【分析】
    (1)令x=0,则y=8,令y=0,则x=6,即可求解;
    (2)由题意得: ,从而得到 ,进而得到点P(2t,8﹣4t),则有x=2t,y=8﹣4t,即可求解;
    (3)分两种情况:①当点Q在AB下方时,当点Q在AB上方时,即可求解.
    【详解】
    解:(1)∵y=﹣x+8,
    令x=0,则y=8,令y=0,则x=6,
    ∴A点坐标为(6,0),B点坐标为(0,8);
    (2)由题意得:,
    ∴点P(2t,8﹣4t),
    则x=2t,y=8﹣4t,
    故点P所在的直线表达式为:y=8﹣2x;
    (3)当点Q在AB下方时,
    将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),
    当△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,
    设过点P且平行于AB的直线表达式为:y=﹣x+b,
    将点P的坐标代入上式得:=﹣×+b,解得:b=,
    故函数的表达式为:y=﹣x+,
    当x=0时,y=,当y=0时,x=,
    即点Q(0,)或(,0).
    当点Q在AB上方时,
    同理可得:点Q的坐标为:(,0)或(0,);
    综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).
    【点睛】
    本题主要考查了一次函数的图象和性质,一次函数与动点问题,熟练掌握一次函数的图象和性质是解题的关键.
    4、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.
    【解析】
    【分析】
    (1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;
    (2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;
    ②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.
    【详解】
    解:(1)∵B(0 ,3),
    ∴OB=3,
    ∵OB=CD,且OD=2OC,
    ∴OC=1,OD=2,
    ∴C(-1 ,0),D(2 ,0);
    故答案为:(-1 ,0),(2 ,0);
    (2)①过点F作FP⊥轴于点P,

    ∵∠PBF=∠BCO,BF=BC,
    又∠FPB=∠BOC=90°,
    ∴△FPB≌△BOC(AAS),
    ∴FP=BO=3,PB= OC=1,
    ∴PO=4,
    ∴F(-3 ,4);
    ②过点F作FQ⊥BE于点Q,
    ∵∠CBO+∠BCO=90°,∠PBF=∠BCO,
    ∴∠CBO+∠PBF=90°,则∠CBF=90°,
    由折叠的性质得:∠EBC=∠OBC,EB=BO=3,
    ∴∠EBC +∠EBF=90°,
    ∴∠EBF=∠PBF,即FB是∠PBE的角平分线,
    又FQ⊥BE,FP⊥轴,
    ∴FQ= FP=3,
    ∴△BEF的面积为BEFQ=.
    【点睛】
    本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.
    5、(1)y=x+1;(2)n﹣1;(3)①3;②C(0,﹣1)
    【解析】
    【分析】
    (1)设直线AB的解析式为y=kx+b,用待定系数法求解;
    (2)先表示出PD的长,然后根据△ABP的面积=△APD的面积+△BPD的面积=求解;
    (3)①先根据S△ABP=2求出n,求出BP的长,然后可确定点C的位置;②设C(0,c),根据PC=BC可求出c的值.
    【详解】
    解:(1)设直线AB的解析式为y=kx+b,把A(0,1),B(﹣3,0)代入,得

    解得

    ∴;
    (2)当x=-1时,,
    ∵P(﹣1,n),
    ∴PD=,
    ∴△ABP的面积=△APD的面积+△BPD的面积
    =
    =
    =;
    (3)①由题意得=2,
    解得n=2,
    ∴P(-1,2),
    PE=2,BE=3-1=2,
    ∴BP=,
    ∵,
    ∴BP≠OB,
    ①如图,以点P为顶点的等腰三角形有2个,以点C为顶点的等腰三角形有1个,所以满足条件的点C的个数是3个,
    故答案为:3;
    ②设C(0,c),
    ∵P(-1,2),B(﹣3,0),
    ∴PC2==,
    BC2==,
    当PC=BC时,
    c2-4c+5= c2+9,
    ∴c=-1,
    ∴C(0,-1).


    【点睛】
    本题考查了待定系数法求一次函数解析式,坐标与图形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握待定系数法、勾股定理是解答本题的关键.

    相关试卷

    2021学年第十四章 一次函数综合与测试习题:

    这是一份2021学年第十四章 一次函数综合与测试习题,共29页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。

    初中第十四章 一次函数综合与测试测试题:

    这是一份初中第十四章 一次函数综合与测试测试题,共24页。试卷主要包含了如图,过点A等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共25页。试卷主要包含了如图,过点A,点A个单位长度.等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map