初中第十四章 一次函数综合与测试测试题
展开
这是一份初中第十四章 一次函数综合与测试测试题,共24页。试卷主要包含了如图,过点A等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面哪个点不在函数的图像上( ).A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)2、已知点A(x+2,x﹣3)在y轴上,则x的值为( )A.﹣2 B.3 C.0 D.﹣33、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点是的中点,点在上运动,当时,点的坐标是( )A. B. C. D.4、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )A. B. C. D.5、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )A.4个 B.3个 C.2个 D.1个6、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A.小于12件 B.等于12件 C.大于12件 D.不低于12件7、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)8、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x9、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )A.1个 B.2个 C.3个 D.4个10、在平面直角坐标系中,已知点P(5,−5),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,则k=_____.2、已知一次函数y=ax+b(a,b是常数,a≠0)中,x与y的部分对应值如表,x01234y6420 那么关于x的方程ax+b=0的解是________.3、写出一个一次函数,使其函数值随着自变量的值的增大而增大:______.4、某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是_______.5、某品牌鞋的长度ycm与鞋的“码”数x之间满足一次函数关系.若22码鞋的长度为16cm,44码鞋的长度为27cm,则长度为23cm鞋的码数为 _____.三、解答题(5小题,每小题10分,共计50分)1、五和超市购进、两种饮料共200箱,两种饮料的成本与销售价如下表:饮料成本(元/箱)销售价(元/箱)25353550(1)若该超市花了6500元进货,求购进、两种饮料各多少箱?(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,求与的函数关系式,并求购进种饮料多少箱时,可获得最大利润,最大利润是多少?2、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.3、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系.(2)表格反映了哪两个变量之间的关系?哪个是自变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?4、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.5、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.(1)小红、小华谁的速度快?(2)出发后几小时两人相遇?(3)A,B两地离学校分别有多远? -参考答案-一、单选题1、D【解析】【分析】将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.【详解】解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.2、A【解析】【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.3、A【解析】【分析】由点是的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点P作PM⊥OD于点M, ∵长方形的顶点的坐标分别为,点是的中点,∴点D(5,0)∵,PM⊥OD,∴OM=DM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.4、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.5、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x=0时,甲、乙两人在A、B两地还未出发故A,B之间的距离为1200m故①正确前12min为甲、乙的速度和行走了1200m故由图象可知乙用了24-4=20min走完了1200m则则故②正确又∵两人相遇时停留了4min∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米则b=800故③正确从24min开始为甲独自行走1200-800=400m则t=min故a=24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.6、C【解析】【分析】根据图象找出在的上方即收入大于成本时,x的取值范围即可.【详解】解:根据函数图象可知,当时,,即产品的销售收入大于销售成本,该公司盈利.故选:C.【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x的取值范围是本题的关键.7、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.8、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.【详解】解:由图可知:A(0,3),xB=1.∵点B在直线y=2x上,∴yB=2×1=2,∴点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,∴直线AB的解析式为y=-x+3;故选:D.【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.9、B【解析】【分析】由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.【详解】解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;乙车行驶280千米需要的时间为:小时,所以甲车返回的速度为:千米/时,故②符合题意;由小时,所以 故③符合题意,当乙车行驶2小时时,行驶的路程为:千米,此时甲车行驶1小时,千米,所以两车相距:千米,当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,距离A地千米,所以两车相距千米,故④不符合题意;综上:故选B【点睛】本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.10、D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(5,-5)的横坐标大于0,纵坐标小于0,所以点P所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、﹣2【解析】【分析】把点P(2,﹣4)代入正比例函数y=kx中可得k的值.【详解】解:∵点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,∴﹣4=2×k,解得:k=﹣2,故答案为:﹣2.【点睛】本题考查了用待定系数法求正比例函数解析式,经过函数的某点一定在函数的图象上,理解正比例函数的定义是解题的关键.2、x=2【解析】【分析】方法一:先取两点利用待定系数法求出一次函数解析式,再求方程的解即可;方法二:直接根据图表信息即可得出答案;【详解】解:方法一:取(0,4),(1,2)分别代入y=ax+b,得b=4,a+b=2,解得a=-2,b=4,此时方程-2x+4=0的解为x=2.方法二:根据图表可得:当x=2时,y=0,因而方程ax+b=0的解是x=2.故答案为:x=2.【点睛】本题考查了一次函数,准确利用图表信息、熟练掌握一次函数的相关知识是解题关键.3、(答案不唯一)【解析】【分析】根据其函数值随着自变量的值的增大而增大,可得该一次函数的自变量系数大于0,即可求解.【详解】解:∵其函数值随着自变量的值的增大而增大,∴该一次函数的自变量系数大于0,∴该一次函数解析式为.故答案为:(答案不唯一)【点睛】本题主要考查了一次函数的性质,求函数值,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.4、x>300【解析】【分析】根据题意首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围.【详解】解:由题设可得不等式kx+30<x.∵y1=kx+30经过点(500,80),∴k=,∴y1=x+30,y2=x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<x中x成立,故答案为:x>300.【点睛】本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.5、36【解析】【分析】先设出函数解析式,用待定系数法求出函数解析式,再把y=23代入求出y即可.【详解】解:∵鞋子的长度y cm与鞋子的“码”数x之间满足一次函数关系,∴设函数解析式为:y=kx+b(k≠0),由题意知,x=22时,y=16,x=44时,y=27,∴ ,解得: ,∴函数解析式为:y=x+5,当y=23时,23=x+5,解得:x=36,故答案为:36.【点睛】本题考查一次函数的应用,用待定系数法求函数解析式是本题的关键.三、解答题1、(1)购进A种饮料箱,则购进B种饮料箱;(2)求购进种饮料箱时,可获得最大利润,最大利润是元【解析】【分析】(1)设购进A种饮料箱,则购进B种饮料箱,根据两种饮料的成本乘以数量等于6500元,列出二元一次方程即可解决问题;(2)根据利润等于销售价减去成本再乘以销量,列出与的函数关系式,进而根据一次函数的性质求得最大值【详解】(1)设购进A种饮料箱,则购进B种饮料箱,根据题意得解得答:购进A种饮料箱,则购进B种饮料箱(2)设购进种饮料箱(),200箱饮料全部卖完可获利润元,则随的增大而减小,又时,可获得最大利润,最大利润是(元)【点睛】本题考查了二元一次方程组的应用,一次函数的应用,根据题意列出关系式和方程组是解题的关键.2、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.【详解】(1)轴于点,轴于点,,,,,,;(2) 如图2,过点作轴,交于点,,,轴,,,,,,,, 在与中,,,,即点为中点;(3) 如图3,延长到,使,连接,,延长交于点,,,,,,,,,,,,,,,,,,,,,,即.【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.3、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x.【解析】【分析】(1)根据题中数据列出表格.(2)找出题中的两个变量.(3)根据传播速度与温度的变化规律进而得出答案.(4)结合(3)中发现得出两个变量之间的关系.【详解】(1)列表如下:x(℃)051015202530y(米/秒)331334337340343346349 (2)两个变量是:传播的速度和温度,温度是自变量.(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35℃时,估计音速y可能是:352米/秒.(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x.【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键.4、(1)6,30°;(2)见解析,30【解析】【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.5、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m【解析】【分析】(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;(2)观察横坐标,可得答案;(3)观察纵坐标,可得答案.【详解】解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min), >,小华的速度快.(2)由横坐标看出,出发后h两人相遇.(3)由纵坐标看出A地距学校500m,B地距学校200m.【点睛】本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
相关试卷
这是一份数学第十四章 一次函数综合与测试同步训练题,共26页。试卷主要包含了已知点A,变量,有如下关系,如图,一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步训练题,共25页。试卷主要包含了如图,过点A,点A个单位长度.等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试练习题,共23页。试卷主要包含了已知点A,若直线y=kx+b经过第一,正比例函数y=kx的图象经过一等内容,欢迎下载使用。