年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布专题练习试题(无超纲)

    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布专题练习试题(无超纲)第1页
    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布专题练习试题(无超纲)第2页
    2022年最新精品解析京改版八年级数学下册第十七章方差与频数分布专题练习试题(无超纲)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十七章 方差与频数分布综合与测试课后作业题

    展开

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后作业题,共20页。
    京改版八年级数学下册第十七章方差与频数分布专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为(    A.11 B.10 C.9 D.82、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为(    ).A.9 B.8 C.7 D.63、已知一组数据的方差s2[(6﹣7)2+(10﹣7)2+(a﹣7)2+(b﹣7)2+(8﹣7)2](ab为常数),则a+b的值为(  )A.5 B.7 C.10 D.114、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是(    周阅读用时数(小时)45812学生人数(人)3421A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是65、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差6.20.256.00.585.80.126.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选(    A.甲 B.乙 C.丙 D.丁6、已知两组数据x1x2x3x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是(  )A.平均数 B.中位数 C.众数 D.方差7、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组8、用计算器计算方差时,要首先进入统计计算状态,需要按键(    A. B.C. D.9、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是(        )A.跳绳次数不少于次的占B.大多数学生跳绳次数在范围内C.跳绳次数最多的是D.由样本可以估计全年级人中跳绳次数在次的大约有10、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是(    A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一组数据abcde的方差为,则新的数据2a﹣1、2b﹣1、2c﹣1、2d﹣1、2e﹣1的方差是 ______.2、为了了解社区居民的用水情况,小江调查了80户居民,发现人均日用水量在基本标准量(50升)范围内的频率是0.75,那么他所调查的居民超出了标准量的有________户.3、某班50名学生参加2013年初中毕业生毕业考试,综合评价等级为ABC等的学生情况如扇形图所示,该学校共有500人参加毕业考试,估计该学校得A等的学生有______名.4、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为,则身高较整齐的球队是________队(填“甲”或“乙”).5、若整数1至50的方差为,整数51至100的方差为,则的大小关系是__________.三、解答题(5小题,每小题10分,共计50分)1、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了          名学生;(2)“羽毛球”部分的学生有          人,并补全统计图;(3)“足球”部分所对应的圆心角为          度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?2、为了庆祝新中国成立72周年,某校学生处在七年级和八年级开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,并从七、八年级各随机抽取了40名同学的知识竞赛成绩数据,并将数据进行整理分析.(竞赛成绩用x表示,共分为四个等级:Ax<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100)下面给出了部分信息:七年级C等中全部学生的成绩为:86,87,83,89,84,89,86,89,89,85.八年级D等中全部学生的成绩为:92,95,98,98,98,98,100,100,100,100.七、八年级抽取的学生知识竞寨成绩统计表 平均数中位数众数满分率七年级91bc八年级918797七年级抛取的学生知识竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出上述表中abcm的值;(2)根据以上数据,你认为该校七、八年级的知识竞赛,哪个年级的成绩更好,并说明理由(写出一条理由即可);(3)该校七年级的1800名学生和八年级的2500名学生参加了此次知识竞赛,若成绩在90分(包含90分)以上为优秀,请你估计两个年级此次知识竞赛中优秀的人数.3、为进一步推广大课间活动,某中学对已开设的A篮球、B立定跳远、C跑步、D跳绳,四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)学校共抽取了多少学生进行调查;(2)通过计算把条形统计图补充完整;(3)若该校共用800名学生,请你估计喜欢立定跳远和跳绳活动项目的学生共有多少人.4、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表: 平均成绩(环)众数(环)中位数方差7a7c78b4.2填空:a     b     c     (2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好.5、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即ABCDE五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数. -参考答案-一、单选题1、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:分10组.故选:B.【点睛】本题考查了组距的划分,一般分为组最科学.2、B【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.3、D【分析】根据方差的定义得出这组数据为6,10,ab,8,其平均数为7,再利用平均数的概念求解可得.【详解】解:由题意知,这组数据为6,10,ab,8,其平均数为7,
    ×(6+10+ab+8)=7,
    ab=11,
    故选:D.【点睛】本题主要考查方差,解题的关键是根据方差的公式得出这组数据及其平均数.4、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
    B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
    C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
    D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
    故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.5、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.6、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.7、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.8、B【分析】由于不同的计算器,其操作不完全相同,可以根据计算器的说明书进行操作.【详解】解:用计算器求方差的一般步骤是:①使计算器进入MODE 2状态;②依次输入各数据;③按求的功能键,即可得出结果.故选:B.【点睛】本题主要考查了计算器求方差,正确掌握计算器的基本使用方法是解题关键.9、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得.【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A.【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解.10、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
    故选:B【点睛】此题主要考查了频率,关键是掌握计算方法.二、填空题1、【分析】根据方差的变化规律即可得出答案,即当数据都减去一个数时,方差不变,当乘以一个数时,方差变成这个数的平方倍.【详解】解:∵数据abcde的方差是1.2,∴数据2a−1、2b−1、2c−1、2d−1、2e−1的方差是22×1.2=4.8.故答案为:4.8.【点睛】本题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当乘以一个数时,方差变成这个数的平方倍.2、20【分析】根据频数等于总数乘以频率,即可求解.【详解】解:调查的居民超出了标准量的有 户.故答案为:20.【点睛】本题主要考查了频数和频率,熟练掌握频率之和等于1,且频数等于总数乘以频率是解题的关键.3、100【分析】根据各部分的和可以看作整体1,求得A等的所占百分比,A等学生占该班人数的百分比乘以总人数即A等的人数.【详解】解:500×(1-30%-50%)=100.故答案为:100.【点睛】本题考查扇形统计图,解题的关键是记住百分比,总人数,所占人数之间的关系.4、甲【分析】根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵S2S2∴身高较整齐的球队是甲队.故答案为:甲.【点睛】本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:整数51至100是整数1至50的每一个数都加上50所得,一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,波动程度不变,方差不变,故答案为:【点睛】本题考查方差的意义:一般地设个数据,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,关键是掌握一组数据都加上同一个非零常数,方差不变.三、解答题1、(1);(2);作图见解析;(3);(4)【分析】(1)篮球人数为,占总人数的,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为则有解得故答案为(2)羽毛球部分的学生占总人数的羽毛球的人数为故答案为统计图补充如图所示:(3)由图知足球部分的人数为足球部分占总人数的足球部分对应圆心角的大小为故答案为(4)跳绳人数占比为该校喜欢跳绳的人数有(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.2、(1)a=10%;b=89;c=100;m=10;(2)七年级的成绩更好,见解析;(3)估计两个年级此次知识竞赛中优秀的人数为1435人.【分析】(1)用七年级C等人数除以40即可得出C等所占比例,再用单位“1”分别减去BCD所占比例即可得出a的值;根据中位数的定义(将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)可得b的值;根据众数的定义(一组数据中出现次数最多的数据叫做众数)可得c的值;用满分人数除以40即可得出m的值;(2)答案不唯一,合理均可;(3)总人数乘以90分(包含90分)以上人数所占比例即可.【详解】解:(1)七年级C等有10人,故C等所占比例为×100%=25%,所以a=1-20%-45%-25%=10%;七年级A等有:40×10%=4(人),B等有:40×20%=8(人),把七年级所抽取了40名同学的知识竞赛成绩从低到高排列,排在最中间的数是89,89,所以中位数b=89;因为七年级满分人数为:40×25%=10(人),所以众数c=100;八年级满分率为:×100%=10%,故m=10;(2)因为两个年级的平均数相同,而七年级的中位数、众数和满分率都过于八年级,所以七年级的成绩更好;(3)1800×45%+2500××100%=1435(人),估计两个年级此次知识竞赛中优秀的人数为1435人.【点睛】本题考查频数分布直方图,扇形统计图,掌握两个统计图中数量之间的关系是正确解答的关键.3、(1)学校共抽取了150名学生进行调查;(2)见解析;(3)400人【分析】(1)根据题意由A项目人数及其所占百分比可得被调查总人数;
    (2)由题意根据四个项目人数之和等于总人数求出C项目人数,从而补全图形;
    (3)根据题意用总人数乘以样本中喜欢立定跳远和跳绳活动项目的学生所占比例即可.【详解】解:(1)根据题意得:15÷10%=150(名).答:学校共抽取了150名学生进行调查. (2)本项调查中喜欢“跑步”的学生人数是;150﹣15﹣45﹣30=60(人),画图如下:(3)800×(20%+30%)=400(人)答:估计全校喜欢立定跳远和跳绳活动项目的学生共有400人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.4、(1);(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下: 其中环出现了4次,所以众数是环, 由折线统计图可得:按从小到大排序为: 所以中位数为:.故答案为:(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.5、(1)40;(2)补图见解析;(3)117°;(4)40人.【分析】(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:(人),故答案为:40;(2)C等级的人数有:(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:故答案为:117°;(4)估计该校A等级的学生人数有:(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键. 

    相关试卷

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题:

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试复习练习题,共20页。试卷主要包含了一组数据等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步训练题,共19页。试卷主要包含了已知一组数据的方差s2=[等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题,共21页。试卷主要包含了下列说法正确的是,在频数分布表中,所有频数之和等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map