初中北京课改版第十七章 方差与频数分布综合与测试课后作业题
展开
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后作业题,共21页。
京改版八年级数学下册第十七章方差与频数分布综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、年将在北京--张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,选手成绩更稳定的是( )A.甲 B.乙 C.都一样 D.不能确定2、下列说法正确的是( )A.调查“行云二号”各零部件的质量适宜采用抽样调查方式B.5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83C.某游戏的中奖率为1%,则买100张奖券,一定有1张中奖D.某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,则乙班成绩更稳定3、为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是64、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是5、甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中( ) 成绩(单位:环)甲378810乙778910A.甲的平均数大于乙的平均数B.甲的中位数小于乙的中位数C.甲的众数大于乙的众数D.甲的方差小于乙的方差6、对于一列数据(数据个数不少于6),如果去掉一个最大值和一个最小值,那么这列数据分析一定不受影响的是( )A.平均数 B.中位数 C.众数 D.方差7、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示: 甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A.甲 B.乙 C.丙 D.丁8、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )A.11 B.10 C.9 D.89、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A.3和2 B.4和3 C.5和2 D.6 和210、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A.众数 B.中位数 C.平均数 D.方差第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是,则在本次测试中,_______运动员的成绩更稳定(填“甲”或“乙”).2、若一组数据,,,…,的方差为4.5,则另一组数据2,2,2,…,2的方差为____.3、在数3141592653中,偶数出现的频率是______.4、甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.2环,方差分别是,,,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”).5、 “绿水青山就是金山银山”为了响应党中央对环境保护的号召,某校要从报名的甲、乙、丙三人中选取一人去参加南宁市举办的环保演讲比赛经过两轮初赛后,甲、乙、丙三人的平均成绩都是89,方差分别是,,.你认为__________参加决赛比较合适.三、解答题(5小题,每小题10分,共计50分)1、某校组织1000名学生参加“展示我美丽祖国 ”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表分数段频数百分比80≤x<85a20%85≤x<9080b90≤x<956030%95≤x<10020 根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a ,b ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等 奖的人数.2、中考改革是为了进一步推进高中阶段学校考试招生制度,眉山市在初中毕业生学业考试、综合素质评价、高中招生录取等方面进行了积极探索,对学生各科成绩实行等级制,即A、B、C、D、E五个等级,根据某班一次数学模拟考试成绩按照等级制绘制了两幅统计图(均不完整),请根据统计图提供的信息解答下列问题.(1)本次模拟考试该班学生有_____人;(2)补全条形统计图;(3)扇形统计图中D等级对应扇形的圆心角的度数为______;(4)该校共有800名学生,根据统计图估计该校A等级的学生人数.3、为了秉承“弘扬剪纸非遗文化,增强校园文化底蕴”的宗旨,某校邀请剪纸艺术工作室开设剪纸小课堂并举行剪纸比赛,比赛结束后从中随机抽取了20名学生的剪纸比赛成绩x,收集数据如下:成绩(分)人数(人)6554根据以上信息,解答下列问题:(1)成绩这一段的人数占被抽取总人数的百分比为_____________;(2)若本次共有260名学生参加比赛,请估计剪纸比赛成绩不低于70分的学生人数.4、某校对七年级学生进行“综合素质”评价,评价的结果分为A、B、C、D四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B等级人数所占百分比是 ;C等级所在扇形的圆心角是 度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有 名.5、2021年4月13日,日本政府召开内阁会议正式决定,将福岛第一核电站超过100万公吨的核污水经过滤并稀释后排入大海,这一决定遭到包括福岛民众、日本渔民乃至国际社会的谴责和质疑.鉴于此次事件的恶劣影响,某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示.根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为 分;(2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好. -参考答案-一、单选题1、A【分析】分别计算计算出甲乙选手的方差,根据方差越小数据越稳定解答即可.【详解】解:甲选手平均数为:,乙选手平均数为:,甲选手的方差为:,乙选手的方差为: ∵可得出:,则甲选手的成绩更稳定,故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、B【分析】分别对各个选项进行判断,即可得出结论.【详解】解:A、调查“行云二号”各零部件的质量适宜采用全面调查方式,原说法错误,故该选项不符合题意;B、5位同学月考数学成绩分别为95,83,76,83,100,则这5位同学月考数学成绩的众数为83,正确,故该选项符合题意;C、个游戏的中奖率是1%,只能说买100张奖券,有1%的中奖机会,原说法错误,故该选项不符合题意;D、某校举办了一次生活大百科知识竞赛,若甲、乙两班的成绩平均数相同,方差分别为40,80,∵40<80,则甲班成绩更稳定,原说法错误,故该选项不符合题意;故选:B.【点睛】本题考查了概率、众数、全面调查、抽样调查以及方差知识;熟练掌握有关知识是解题的关键.3、D【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案.【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;
B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;
C、这组数据的平均数是:(4×3+5×4+8×2+12)÷10=6;
D、这组数据的方差是:×[(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2]=6;
故选:D.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.4、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;S=,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、C【分析】根据题意求出众数,中位数,平均数和方差,然后进行判断即可.【详解】解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;D、,,所以D选项说法错误,不符合题意.故选C.【点睛】本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.6、B【分析】根据中位数不受极端值的影响即可得.【详解】解:由题得,去掉了一组数据的极端值,中位数不受极端值的影响,故选B.【点睛】本题考查了一组数的特征数据,解题的关键是掌握平均数,中位数,众数,方差.7、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意,丁同学的平均分为:,方差为:;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:,分10组.故选:B.【点睛】本题考查了组距的划分,一般分为组最科学.9、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得,解得x=6,∴这组数据的方差是.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.10、D【分析】根据题意得出原中位数、平均数、众数及方差,然后得出再去掉一个数据3后的中位数、众数、平均数及方差,进而问题可求解【详解】解:由题意得:原中位数为3,原众数为3,原平均数为3,原方差为1.8;去掉一个数据3后的中位数为3,众数为3,平均数为3,方差为2;∴统计量发生变化的是方差;故选D【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数及方差是解题的关键.二、填空题1、甲【分析】先根据甲的方差比乙的方差小,再根据方差越大,波动就越大,数据越不稳定,方差越小,波动越小,数据越稳定即可得出答案.【详解】解:∵,
∴,
∴甲运动员比乙运动员的成绩稳定;
故答案为:甲.【点睛】本题考查了方差的意义,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2、18【分析】根据方差的计算公式计算即可.【详解】设,,,…,的平均数为,则2,2,2,…,2的平均数为2,∵数据,,,…,的方差为4.5,∴=,∴===18,故答案为:18.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.3、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.4、丙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵S甲2=0.76,S乙2=0.71,S丙2=0.69,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙.故答案为:丙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、丙【分析】根据方差越小,成绩越稳定即可判断.【详解】解:∵,,,且1.5<3.3<12,,丙的成绩最稳定,丙参加决赛比较合适,故答案为:丙.【点睛】本题主要考查方差的意义,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.三、解答题1、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:(人),∴;,故答案为:40;40%;(2)成绩在的学生人数所占百分比为:,故频数分布表为:分数段频数百分比80≤x<854020%85≤x<908040%90≤x<956030%95≤x<1002010%频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.2、(1)40;(2)补图见解析;(3)117°;(4)40人.【分析】(1)根据B等级的人数和所占的百分比即可得出答案;(2)先求出C等级的人数,再补全统计图即可;(3)用360°乘以D等级所占的比例即可;(4)用该校的总人数乘以A等级的学生所占的比例即可.【详解】解:(1)本次模拟考试该班学生有:(人),故答案为:40;(2)C等级的人数有:(人),补全统计图如下:(3)扇形统计图中D等级对应扇形的圆心角的度数为:,故答案为:117°;(4)估计该校A等级的学生人数有:(人).【点睛】题目主要考查条形统计图和扇形统计图,包括画条形统计图,求扇形统计图的圆心角,用样本估计总体符合条件的人数等,理解题意,熟练将两个统计图结合获取信息是解题关键.3、(1);(2)182人.【分析】(1)由题意根据图表得出成绩这一段的人数,进而除以抽取总人数即可得到答案;(2)根据题意先得出抽取的成绩不低于70分的学生人数并得出其所占百分比,进而乘以260即可得出答案.【详解】解:(1)根据图表可得成绩这一段的人数为:6人,所以成绩这一段的人数占被抽取总人数的百分比为:,故答案为:;(2)根据图表可得成绩不低于70分的学生人数为:(人),所以剪纸比赛成绩不低于70分的学生人数为:(人).答:剪纸比赛成绩不低于70分的学生人数有182人.【点睛】本题考查数据的分析与处理,熟练掌握用样本估计总体的统计思想方法是解题的关键.4、(1)25%;72;(2)见解析;(3)700.【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中A、B等级人数和所占比例即可.【详解】解:(1)∵被调查的人数为4÷10%=40(人),∴B等级人数为40﹣(18+8+4)=10(人),则B(良好)等级人数所占百分比是 ×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×=72°,故答案为:25%;72;(2)补全条形统计图如下:;(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.5、(1)95;(2)高中代表队的平均数为95分,初中代表队的平均数为90分;(3)初中代表队学生复赛成绩的方差为40,高中代表队成绩较好.【分析】(1)根据中位数的定义求解即可;(2)根据平均数的定义求解即可;(3)根据方差的定义求出初中代表队学生复赛成绩的方差,然后根据平均数和方差越小越稳定判断即可.【详解】解:(1)五个人的成绩从小到大排列为:90,90,95,100,100,一共有5个数,第3个数为中位数,∴中位数是95;(2)高中代表队的平均数=(分),初中代表队的平均数=(分);(3)初中代表队学生复赛成绩的方差=,∵,∴高中代表队成绩较好.【点睛】此题考查了平均数,中位数和方差及其意义,解题的关键是熟练掌握平均数,中位数和方差的求解方法.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课后测评,共18页。试卷主要包含了在一次射击训练中,甲,2020年某果园随机从甲,已知一组数据的方差s2=[等内容,欢迎下载使用。
这是一份2021学年第十七章 方差与频数分布综合与测试课后练习题,共20页。试卷主要包含了下列说法中正确的是.,2020年某果园随机从甲等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试练习题,共21页。试卷主要包含了在一次投篮训练中,甲,2020年某果园随机从甲等内容,欢迎下载使用。