初中数学第十七章 方差与频数分布综合与测试课后复习题
展开
这是一份初中数学第十七章 方差与频数分布综合与测试课后复习题,共21页。
京改版八年级数学下册第十七章方差与频数分布定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )
A.90分以上的学生有14名 B.该班有50名同学参赛C.成绩在70~80分的人数最多 D.第五组的百分比为16%2、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示: 甲乙丙平均数/分969597方差0.422丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )A.甲 B.乙 C.丙 D.丁3、2021年正值中国共产党建党100周年之际,某校开展“致敬建党百年,传承红色基因”党史知识竞赛活动.八年级甲、乙、丙、丁四个小组的同学分别参加了年级预赛,四个小组的平均分相同,若要从中选择出一个各成员实力更平均的小组代表年级参加学校决赛,那么应选( ) 甲乙丙丁 方差3.63.244.3A.甲组 B.乙组 C.丙组 D.丁组4、甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及方差如表:测试者平均成绩(单位:m)方差甲6.20.25乙6.00.58丙5.80.12丁6.20.32若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选( )A.甲 B.乙 C.丙 D.丁5、已知两组数据x1,x2,x3和x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是( )A.平均数 B.中位数 C.众数 D.方差6、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期日一二三四五六个数11121013131312对于小强做引体向上的个数,下列说法错误的是( )A.平均数是12 B.众数是13C.中位数是12.5 D.方差是7、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频率是60% D.出现正面的频数是40%8、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是9、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲2=5,S乙2=20,S丙2=23,S丁2=32,则这四名学生的数学成绩最稳定的是( )A.甲 B.乙 C.丙 D.丁10、远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( )A.众数是11 B.平均数是12 C.方差是 D.中位数是13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据0,1,3,2,4的平均数是__,这组数据的方差是__.2、现有甲、乙两支球队,每支球队队员身高数据的平均数均为1.70米,方差分别为、,则身高较整齐的球队是________队(填“甲”或“乙”).3、若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.4、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.5、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm),计算它们的平均数和方差,结果为:,,,.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
2、今年5月22日,我国“杂交水稻之父”、中国工程院院士、“共和国勋章”获得者、让国人吃饱饭的伟大科学家袁隆平先生不幸逝世.“一粥一饭,当思来之不易”,倡导“光盘行动”,让同学们珍惜粮食,某校政教处在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图. (1)这次被调查的同学共有______名;(2)将条形统计图补充完整;(3)学校政教处通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人食用一餐,据此估算,该校3800名学生一餐浪费的食物可供多少人食用一餐?3、学校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:(1)此次共调查了多少人?(2)通过计算将条形统计图补充完整;(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?4、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:(1)在这次研究中,一共调查了 名学生.(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度.(3)补全频数分布折线统计图.(4)估计该校喜欢排球的学生有多少人?5、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人? -参考答案-一、单选题1、A【分析】从条形图可得:90分以上的学生有8名,再求解第五组的占比与总人数,再利用频数与频率的含义逐一判断各选项即可得到答案.【详解】解:由条形图可得:90分以上的学生有8名,故符合题意;由条形图可得第五组的占比为: 第五组的频数是8, 总人数为:人,故不符合题意;成绩在70~80分占比,所以人数最多,故不符合题意;故选:【点睛】本题考查的是从条形图中获取信息,频数与频率的含义,理解频数与频率的含义是解题的关键.2、D【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛.【详解】解:根据题意,丁同学的平均分为:,方差为:;∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,∴应该选择丁同学去参赛;故选:D.【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、B【分析】由平均数相同,根据方差越小越稳定可得出结论.【详解】解:∵4.3>4>3.6>3.2∴,∵四个小组的平均分相同,∴乙组各成员实力更平均,选择乙组代表年级参加学校决赛.故选择B.【点睛】本题考查平均数与方差,利用方差进行决策,掌握方差的意义是解题关键.4、A【分析】首先比较平均成绩,找到平均成绩最好的,当平均成绩一致时再比较方差,方差较小的发挥较稳定【详解】解:∵,∴应在甲和丁之间选择,甲和丁的平均成绩都为6.2,甲的方差为0.25,丁的方差为0.32,,甲的成绩好且发挥稳定,故应选甲,故选A.【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.5、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.6、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.7、C【分析】根据频率的计算方法判断各个选项.【详解】解:A、应为:出现正面的频数是4,错误,不符合题意;B、应为:出现反面的频数是6,错误,不符合题意;C、正确,符合题意;D、出现正面的频率是40%,错误,不符合题意.故选:C.【点睛】本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.8、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;S=,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.9、A【分析】根据方差的意义求解即可.【详解】解:∵S甲2=5,S乙2=20,S丙2=23,S丁2=32,∴S甲2<S乙2<S丙2<S丁2,∴这四名学生的数学成绩最稳定的是甲,故选:A.【点睛】本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、D【分析】根据中位数、平均数、众数和方差的定义计算即可得出答案.【详解】解:A.数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,故选项A不符合题意;B. =(11+10+11+13+11+13+15)÷7=12,即平均数是12,故选项B不符合题意; C.S2=×[(10-12)2+(11-12)2×3+(13-12)2×2+(15-12)2]=,故选项C不符合题意;D.将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,故选项D符合题意;故选:D.【点睛】本题主要考查了中位数、平均数、众数和方差,熟练掌握中位数、众数的定义和方差、平均数的计算公式是解题的关键.二、填空题1、2 2 【分析】依据平均数的定义:,计算即可得;再根据方差的定义: 列式计算可得.【详解】解:这组数据的平均数,方差,故答案为:2,2.【点睛】本题主要考查了平均数,方差的计算,熟悉相关性质是解题的关键.2、甲【分析】根据方差的意义可判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:∵S2甲<S2乙∴身高较整齐的球队是甲队.故答案为:甲.【点睛】本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3、8 9 【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x1,x2,…xn的平均数是2,∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;∵数据x1,x2,…xn的方差为1,∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,∴数据3x1+2,3x2+2,…+3xn+2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.4、样本平均数 组中值 组中值 频数 【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.5、甲【分析】根据题意可得:,即可求解.【详解】解:∵,,,.∴,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键.三、解答题1、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:
(3)估计科普类书籍的本数为1200×=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)1000;(2)补图见解析;(3)大约可供760人食用一餐.【分析】(1)用“没有剩”的人数除以其所占百分比即可得到总人数;(2)先求出“剩少量”的人数,然后补全统计图即可;(3)先求出样本中,浪费的粮食可供人食用的人数占比,然后估计总体即可.【详解】解:(1)由题意得这次被调查的同学共有名;(2)由(1)可知,“剩少量”的人数=1000-400-250-150=200人,∴补充完整的条形统计图如图所示;(3)∵1000人浪费的粮食可供200人食用一餐.∴,∴这餐饭3800名学生浪费的粮食大约可供760人食用一餐.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,画条形统计图等等,准确读懂统计图是解题的关键.3、(1)200人;(2)画图见解析;(3)600人【分析】(1)由喜欢体育类的有80人,占比40%,再列式计算即可;(2)先分别求解喜欢其它与喜欢艺术的人数,再补全图形即可;(3)由总人数乘以样本中喜欢体育类的占比即可得到答案.【详解】解:(1)由喜欢体育类的有80人,占比40%,可得此次共调查人(2)由喜欢文学的有60人,则占比: 所以喜欢其它的占比: 则有:人,喜欢艺术的有:人,补全图形如下:(3)该校有1500名学生,喜欢体育类社团的学生有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形统计图,利用样本估计总体,掌握“获取条形图与扇形图的互相关联的信息”是解本题的关键.4、(1)100;(2)36;(3)见解析;(4)286【分析】(1)用乒乓球的人数除以其百分比即可得到调查的学生数;(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;(3)根据(2)的数据补全统计图;(4)用学校的总人数乘以喜欢排球的比例即可得到答案.【详解】解:调查的学生有(名),故答案为:100;(2)喜欢篮球的人数有(名),喜欢排球的人数是100-30-20-40=10(名),∴喜欢排球的人数在扇形统计图中所占的圆心角是,故答案为:36;(3)如图:(4)该校喜欢排球的学生有(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5、(1)人;(2)画图见解析;(3)人【分析】(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有人,(2)喜欢排球的占比为: 所以喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试练习,共20页。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试精练,共20页。试卷主要包含了下列说法中正确的是.,数学老师将本班学生的身高数据,2020年某果园随机从甲等内容,欢迎下载使用。
这是一份数学第十七章 方差与频数分布综合与测试巩固练习,共23页。