北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测
展开
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课堂检测,共20页。
京改版八年级数学下册第十七章方差与频数分布同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )A.众数 B.平均数 C.中位数 D.方差2、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )A.0.6 B.6 C.0.4 D.43、甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,,,,这四个旅游团中年龄相近的旅游团是( )A.甲团 B.乙团 C.丙团 D.丁团4、某班在开展“节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,发现节水0.5m3的有2人,水1m3的有3人,节水1.5m3的有2人,节水2m3的有3人,用所学的统计知识估计全班同学的家庭一个月节约用水的总量是( )A.20m3 B.52m3 C.60m3 D.100m35、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.86、从某工厂即将出售的一批产品中抽检件产品,其不合格的产品有件,则此抽样调查的样本中,样本容量和不合格的频率分别是( )A., B., C., D.,7、一组数据分别为a,b,c,d,e,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是( )A.中位数 B.方差 C.平均数 D.众数8、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A.平均数、中位数和众数都是3B.极差为4C.方差是D.标准差是9、若一组数据3,x,4,5,7的平均数为5,则这组数据中x的值和方差为( )A.3和2 B.4和3 C.5和2 D.6 和210、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名运动员参加决赛,最合适的运动员是______. 甲乙平均数368320方差2.55.6 2、甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为=38,=10,则______同学的数学成绩更稳定.3、在数3141592653中,偶数出现的频率是______.4、已知一组数据1,a,3,6,7,它的平均数是5,这组数据的方差是_______.5、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.三、解答题(5小题,每小题10分,共计50分)1、某校学生会为了解该校2860名学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:(1)在这次研究中,一共调查了 名学生.(2)喜欢排球的人数在扇形统计图中所占的圆心角是 度.(3)补全频数分布折线统计图.(4)估计该校喜欢排球的学生有多少人?2、某学校为了调查学生利用“天天跳绳”APP锻炼身体的使用频率,随机抽取了部分学生,利用调查问卷进行抽样调查:用“A”表示“一周5次”,“B”表示“一周4次”,“C”表示“一周3次”,“D”表示“一周2次”(必须选且只选一项),如图是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)本次调查中,共调查了多少人?(2)将图(2)补充完整;(3)如果该学校有学生1000人,请你估计该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有多少人?3、虎林市教育局为了解九年级学生每学期参加综合实践活动的情况,随机抽样调查某校九年级学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出该校九年级学生总数.(2)求出活动时间为5天的学生人数,并补全频数分布直方图.(3)求该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是多少?4、安岳县教育和体育局在全县中小学开展群文阅读活动,要求每人暑假假期阅读3-6本图书.活动结束后随机抽查了40名学生每人的阅读图书量,并将其分为四类:A:三本,B:四本,C:五本,D:六本,将各类的人数绘制成扇形统计图(图1)和条形统计图(图2),经确定扇形统计图是正确的,而条形统计图存在错误.(1)请指出条形统计图中存在的错误,并说明理由;(2)若该校有3000名学生,请估计全校共有多少名学生阅读量为B类.(3)请计算D类学生在扇形统计图中的圆心角.5、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了 名学生;(2)“羽毛球”部分的学生有 人,并补全统计图;(3)“足球”部分所对应的圆心角为 度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳? -参考答案-一、单选题1、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.2、C【分析】先求出反面朝上的频数,然后根据频率=频数÷总数求解即可【详解】解:∵小明抛一枚硬币100次,其中有60次正面朝上,∴小明抛一枚硬币100次,其中有40次反面朝上,∴反面朝上的频率=40÷100=0.4,故选C.【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.3、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S=6,S=1.8,S=5,S=8,∴1.8<5<6<8∴S最小,∴这四个旅游团中年龄相近的旅游团是:乙团.故选:B.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、B【分析】利用加权平均数求出选出的10名同学每家的平均节水量.再利用用样本估计总体,即由平均节水量乘以总人数即可求出最后结果.【详解】,由此可估计全班同学的家庭一个月节约用水的总量是.故选:B.【点睛】本题考查加权平均数和由样本估计总体.正确的求出样本的平均值是解答本题的关键.5、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.6、C【分析】直接利用样本容量的定义以及结合频数除以总数=频率得出答案.【详解】解:∵从某工厂即将出售的一批产品中抽检100件产品,其中不合格的产品有8件,∴此抽样样本中,样本容量为:100,不合格的频率是:=0.08.故选:C.【点睛】本题主要考查了频数与频率,正确掌握频率求法是解题关键.7、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据a,b,c,d,e的每一个数都加上同一数m(m>0),则新数据a+m,b+m,…e+m的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.8、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=,C选项不符合题意;S=,因此D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.9、D【分析】先根据平均数定义求出x,再根据方差公式计算即可求解.【详解】解:由题意得,解得x=6,∴这组数据的方差是.故选:D【点睛】本题考查了平均数的定义和求一组数据的方差,熟知平均数的定义和方差公式是解题关键.10、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【详解】解:∵打捞a条鱼,发现其中带标记的鱼有b条,
∴有标记的鱼占,
∵共有n条鱼做上标记,
∴鱼塘中估计有n÷=(条).故选:A.【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.二、填空题1、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】解:∵甲的平均数比乙的平均数大,
甲的方差小于乙的方差,
∴最合适的运动员是甲.
故答案为:甲.【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、乙【分析】根据平均数相同时,方差越小越稳定可以解答本题.【详解】解:甲、乙两同学5次数学考试的平均成绩都是132分,方差分别为,,,乙同学的数学成绩更稳定,故答案为:乙.【点睛】本题考查方差,解题的关键是明确方差越小越稳定.3、30%【分析】在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.【详解】由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:故答案为:30%【点睛】本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.4、【分析】结合题意,根据平均数的性质,列一元一次方程并求解,即可得到a;再根据方差的性质计算,即可得到答案.【详解】∵1,a,3,6,7,它的平均数是5∴ ∴ ∴这组数据的方差是: 故答案为:.【点睛】本题考查了平均数、方差、一元一次方程的知识;解题的关键是熟练掌握平均数、方差的性质,从而完成求解.5、15【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.三、解答题1、(1)100;(2)36;(3)见解析;(4)286【分析】(1)用乒乓球的人数除以其百分比即可得到调查的学生数;(2)先计算出喜欢篮球的人数,得到喜欢排球的人数,根据公式计算喜欢排球的人数在扇形统计图中所占的圆心角度数;(3)根据(2)的数据补全统计图;(4)用学校的总人数乘以喜欢排球的比例即可得到答案.【详解】解:调查的学生有(名),故答案为:100;(2)喜欢篮球的人数有(名),喜欢排球的人数是100-30-20-40=10(名),∴喜欢排球的人数在扇形统计图中所占的圆心角是,故答案为:36;(3)如图:(4)该校喜欢排球的学生有(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)人;(2)补全图形见解析;(3)人【分析】(1)由C组有100人,占比列式计算后可得答案;(2)先求解B组人数,再补全图形即可;(3)由总人数1000乘以D组“一周2次”的占比即可得到答案.【详解】解:(1)由C组有100人,占比 可得:本次调查中,共调查人.(2)B组人数有人,补全图形如下:(3)该学校有学生1000人,该学校学生利用“天天跳绳”APP锻炼身体的使用频率是“一周2次”的约有:人.【点睛】本题考查的是从扇形图与条形图中获取信息,补全条形统计图,利用样本估计总体,理解扇形图与条形图中关联信息是解本题的关键.3、(1)200;(2)50,图见解析;(3)90【分析】(1)根据综合实践活动的天数为4天的人数60人,所占比例为,即可求得总人数;(2)将总人数乘以实践活动的天数为5天的学生人数所占的比例即可求得, 活动时间为5天的学生人数,进而求得活动时间为7天的人数,即可补全统计图(3)分别求得活动时间为5,6,7天的人数,求其和即可【详解】解:(1)活动的天数为4天的人数60人,所占比例为,则总人数为:60÷30%=200(人) (2)活动的天数为5天的有:200×(1-10%-15%-30%-5%-15%)=50(人) 活动的天数为7天的有:200×5%=10(人)补全5天和7天的两个直方条 (如图) (3) 50+30+200×5%=90(人) 该校九年级学生一个学期参加综合实践活动天数在5天以上(含5天)的人数是90人【点睛】本题考查了频数直方图和扇形统计图信息关联,从统计图中获取信息是解题的关键.4、(1)C项错误图书数应为12,理由见解析;(2)该校有3000名学生,估计全校共1200学生阅读量为B类;(3)D类学生在扇形统计图中的圆心角为.【分析】(1)依次计算每一项正确的数量,即可判断条形统计图的错误;(2)利用样本估计总体的思想解决问题即可;(3)用360°乘以“D”类人数所占比例即可;.【详解】解:(1)C项错误,学生数应为12,理由如下:A类学生数是:,B类学生数是:,C类学生数是:,D类学生数是:,所以,C项错误,学生数应为12.(2)该校有3000名学生,估计学生阅读量为B类人数:(人).所以,该校有3000名学生,估计全校共1200学生阅读量为B类.(3)D类学生在扇形统计图中的圆心角:.所以,D类学生在扇形统计图中的圆心角为.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.5、(1);(2);作图见解析;(3);(4)【分析】(1)篮球人数为,占总人数的,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为则有解得故答案为.(2)羽毛球部分的学生占总人数的,羽毛球的人数为故答案为.统计图补充如图所示:(3)由图知足球部分的人数为足球部分占总人数的足球部分对应圆心角的大小为故答案为.(4)跳绳人数占比为该校喜欢跳绳的人数有(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.
相关试卷
这是一份初中北京课改版第十七章 方差与频数分布综合与测试课后复习题,共19页。试卷主要包含了某排球队6名场上队员的身高,为考察甲,下列说法中正确的是.等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试一课一练,共20页。试卷主要包含了篮球队5名场上队员的身高等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试课后练习题,共23页。试卷主要包含了某排球队6名场上队员的身高,为考察甲等内容,欢迎下载使用。