初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题
展开
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共20页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
京改版八年级数学下册第十七章方差与频数分布专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( ).A.4 B.5 C.6 D.72、某厂质检部将甲,乙两人第一周每天生产合格产品的个数整理成两组数据,如表:根据数据表,说法正确的是( )甲26778乙23488A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差3、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.44、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ).A.100,55% B.100,80% C.75,55% D.75,80%5、某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在82.5kg及以上的生猪有( )A.20头 B.50头 C.140头 D.200头6、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )A.平均数是89 B.众数是93C.中位数是89 D.方差是2.87、一个人做“抛硬币”的游戏,正面出现4次,反面出现了6次,正确说法为( )A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频率是60% D.出现正面的频数是40%8、下列说法正确的是( )A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶,出现一次故障”是随机事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差大的更稳定9、已知一组数据有80个,其中最大值为140,最小值为40,取组距为10,则可分成( ).A.11组 B.9组 C.8组 D.10组10、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是( )A.甲比乙稳定 B.乙比甲稳定C.甲与乙一样稳定 D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据7,2,1,3的极差为______.2、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.3、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.4、一个样本有20个数据:35 31 33 35 37 39 35 38 40 39 36 34 35 37 36 32 34 35 36 34.在列频数分布表时,如果组距为2,那么应分成________组,36在第________组中.5、某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:班级参加人数平均次数中位数方差甲45135149180乙45135151130下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;(3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)其中正确的命题是___________.(只填序号)三、解答题(5小题,每小题10分,共计50分)1、某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:请根据图中提供的信息,完成下列问题:(1)在这次调查中,一共抽查了 名学生;(2)“羽毛球”部分的学生有 人,并补全统计图;(3)“足球”部分所对应的圆心角为 度;(4)如果该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?2、佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下: (1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.3、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?
4、为加强安全教育,某校开展了“预防水,珍爱生命”安全知识竞赛,现从七,八,九年级学生中随机抽取了50名学生进行竞赛,并将他们的竞赛成绩(百分制)进行了整理和分析,部分信息如下:a.参赛学生成绩频数分布直方图(数据分成五组:,,,,)如图所示;b.参赛学生成绩在这一组的具体得分是:70,71,73,75,76,76,76,77,77,78,79.c.参赛学生成绩的平均数、中位数、众数如下:平均数中位数众数76.9m80d.参赛学生甲的竞赛成绩得分为79分.根据以上信息,回答下列问题:(1)在这次竞赛中,成绩在75分以上的有______人;(2)表中m的值为______.(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数.5、为了解某校学生睡眠时间情况,随机抽取若干学生进行调查.学生睡眠时长记为x小时,将所得数据分为5组(A:;B:;C:;D:;E:),学校将所得到的数据进行分析,得到如下部分信息:请你根据以上信息,回答下列问题:(1)直接写出a的值;(2)补全条形统计图;(3)根据学校五项管理有关要求,中学生睡眠时间应不少于9个小时,那么估计该中学1000名学生中符合要求的有多少人? -参考答案-一、单选题1、C【分析】根据组数=(最大值-最小值)÷组距计算即可.【详解】解:∵在样本数据中最大值与最小值的差为35-15=20,
又∵组距为4,
∵20÷4=5,
∴应该分成5+1=6组.
故选:C.【点睛】本题考查的是组数的计算,解题关键是明确用最大值减最小值的差除以组距可得组数.2、D【分析】根据出现次数最多找到众数,再判断A即可;将数据按顺序排列,找到居于中间位置的数即为中位数,再判断B即可;分别计算出平均数及方差,再判断C、D即可.【详解】解:A.甲的众数为7,乙的众数为8,故此项错误;B.甲的中位数为7,乙的中位数为4,故此项错误;C.甲的平均数为,乙的平均数为,甲的平均数>乙的平均数, 故此项错误;D.甲的方差为,乙的方差为,甲的方差小于乙的方差,故此项正确;故选:D.【点睛】此题主要考查了众数、中位数、方差和平均数,关键是掌握众数、中位数、平均数及方差的概念和方差公式.3、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.【详解】解:小明进球的频率是30÷50=0.6,
故选:B.【点睛】此题主要考查了频率,关键是掌握计算方法.4、B【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案.【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,∴第五小组的频率是,∴此次统计的样本容量是.∵合格成绩为20,∴本次测试的合格率是.故选B.【点睛】本题属于统计内容,考查分析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.5、B【分析】在横轴找到82.5kg的位置,由图可知在80与85的中间,即第三个与第三个长方形的前一个边界值开始算起,将后2组频数相加,即可求解.【详解】依题意,质量在82.5kg及以上的生猪有:(头)故选B.【点睛】本题考查了频数直方图的应用,根据频数直方图获取信息是解题的关键.6、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93,∴平均数为,众数为90,中位数为90,故选项A、B、C错误;方差为,故选项D正确.故选:D.【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.7、C【分析】根据频率的计算方法判断各个选项.【详解】解:A、应为:出现正面的频数是4,错误,不符合题意;B、应为:出现反面的频数是6,错误,不符合题意;C、正确,符合题意;D、出现正面的频率是40%,错误,不符合题意.故选:C.【点睛】本题考查了频率以及频数的概念,熟知频率的计算方法是解本题的关键.8、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B.【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.9、A【分析】据组数=(最大值-最小值)÷组距计算即可得解,注意小数部分要进位.【详解】解:由组数=(最大值-最小值)÷组距可得:组数=(140-40)÷10+1=11,故选择:A【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.10、C【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.二、填空题1、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可.【详解】解:一组数据7,2,1,3的极差为,故答案为:.【点睛】本题考查了极差的定义,熟记定义是解本题的关键.2、最大值与最小值 组距 组数 频数分布表 频数分布直方图 【分析】根据频数分布直方图的步骤即可得出【详解】分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,3、15【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有个,可得,解之即可.【详解】解:设盒子中白球大约有个,根据题意,得:,解得,经检验是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.4、5 3 【分析】确定组数时依据公式:组数=极差÷组距,计算时应该注意,组数应为正整数,若计算得到的组数为小数,则应将小数部分进位;再确定36所在的组数即可.【详解】解:极差为:,所以应分成5组,第一组为,第二组为,第三组为所以36在第3组中,故答案为5,3【点睛】本题考查的是组数的计算,属于基础题,熟练掌握“组数=极差÷组距”是解答本题的关键.5、(2)(3)【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.【详解】解:两个班的平均成绩均为135次,故(1)错误;方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.三、解答题1、(1);(2);作图见解析;(3);(4)【分析】(1)篮球人数为,占总人数的,可以得到调查学生总人数;(2)羽毛球部分的学生占总人数的,可得到羽毛球部分的学生人数;(3)足球部分为人,占总人数的,占圆心角的,可得到足球部分对应圆心角的大小;(4)用喜欢跳绳部分的比例乘以该学校的总人数,就能估计出该校喜欢跳绳的总人数.【详解】解(1)设调查学生总人数为则有解得故答案为.(2)羽毛球部分的学生占总人数的,羽毛球的人数为故答案为.统计图补充如图所示:(3)由图知足球部分的人数为足球部分占总人数的足球部分对应圆心角的大小为故答案为.(4)跳绳人数占比为该校喜欢跳绳的人数有(人);答:该校有240名学生喜欢跳绳【点睛】本题考察了统计图.解题的关键与难点在于理清图中数据的含义以及数据之间的关系.2、(1)见解析;(2)72゜;(3)750人【分析】(1)根据参与调查的总人数及条形统计图中的数据信息,可求得选择美术的人数,从而可补全条形统计图;(2)求得选择书法在参与调查的总人数中所占的百分比,它与360度的积即是所求扇形圆心角的度数;(3)求出选择音乐兴趣班的百分比,即可估计出3000名学生中选择音乐兴趣班的学生人数.【详解】(1)由条形统计图知,选择除美术兴趣班外的学生共有:150+180+120+30=480(人),则选择美术兴趣班的学生有:600-480=120(人),所以可以补充完整条形统计图,补全的条形统计图如下:
(2)选择书法兴趣班的学生人数占所参与调查的学生人数的百分比为:,则表示“书法”的扇形圆心角的度数为20%×360゜=72゜(3)选择音乐兴趣班的学生人数占所参与调查的学生人数的百分比为:,则估计在3000名学生中选择音乐兴趣班的学生人数大约有;25%×3000=750(人)【点睛】本题是条形统计图与扇形统计图的综合,考查了求扇形统计图中圆心角的度数,画条形统计图,用样本的百分数估计总体的百分数,关键是读懂统计图中包含的信息,能正确运用这些信息解决问题.3、(1)40;(2)见解析;(3)360【分析】(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:
(3)估计科普类书籍的本数为1200×=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.4、(1)30;(2)77.5;(3)810【分析】(1)参赛学生成绩频数分布直方图,可得75分以上的有 人,即可求解;(2)根据题意可得位于第25位,第26位的分别为77、78,即可求解;(3)用1500乘以成绩超过平均数76.9分的人数所占的百分比,即可求解.【详解】(1)在这次竞赛中,成绩在75分以上的有 人;(2)∵位于第25位,第26位的分别为77、78,∴中位数为 ,即表中m的值为77.5;(3)该校学生共有1500人,假设全部参加此次竞赛,请估计成绩超过平均数76.9分的人数:(人),答:估计成绩超过平均数76.9分的人数是810人.【点睛】本题主要考查了频数分布直方图,求中位数,用样本估计总体,明确题意,能从频数分布直方图获取准确信息是解题的关键.5、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人).【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果.【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,∴抽取的总人数为:(人),∴D组所占的比例为:,∴a的值为8;(2)C组频数为:,补全统计图如图所示:
(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,∴估计符合要求的人数为:(人).【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试随堂练习题,共22页。试卷主要包含了新型冠状病毒肺炎,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试习题,共18页。试卷主要包含了下列一组数据等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试课时训练,共21页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。