年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项攻克试卷(无超纲)

    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项攻克试卷(无超纲)第1页
    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项攻克试卷(无超纲)第2页
    2021-2022学年基础强化京改版八年级数学下册第十七章方差与频数分布专项攻克试卷(无超纲)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十七章 方差与频数分布综合与测试当堂达标检测题,共19页。
    京改版八年级数学下册第十七章方差与频数分布专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、数字“20211202”中,数字“2”出现的频数是(  )A.1 B.2 C.3 D.42、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是(  )A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人3、一组数据a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n,则另一组数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数和方差分别是(    A.2m-3、2n-3 B.2m-1、4n C.2m-3、2n D.2m-3、4n4、小强每天坚持做引体向上的锻炼,下表是他记录的某一周每天做引体向上的个数.星期个数11121013131312对于小强做引体向上的个数,下列说法错误的是(    A.平均数是12 B.众数是13C.中位数是12.5 D.方差是5、已知两组数据x1x2x3x1+1,x2+1,x3+1,则这两组数据没有改变大小的统计量是(  )A.平均数 B.中位数 C.众数 D.方差6、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是(    A.众数 B.平均数 C.中位数 D.方差7、一组数据分别为abcde,将这组数据中的每个数都加上同一个大于0的常数,得到一组新的数据,则这组新数据的下列统计量与原数据相比,一定不发生变化的是(    A.中位数 B.方差 C.平均数 D.众数8、水稻科研人员为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取60株,分别量出每株高度,发现两组秧苗的平均高度和中位数均相同,甲、乙的方差分别是3.6,6.3,则下列说法正确的是(    A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐 D.无法确定甲、乙出苗谁更整齐9、某手机公司新推出了四款新型手机,公司为了了解各款手机的性能,随机抽取了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是(     平均成绩(分)95989698方差3322A. B. C. D.10、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是(    A.0.25 B.0.3 C.2 D.30第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用_____估计总体平均数.(2)组中值:为了更好地了解一组数据的平均水平,往往把数据进行分组,分组后,一个小组的两个端点的数的平均数叫做这个小组的_____.(3)在频数分布表中,常用各组的_____代表各组的实际数据,把各组的_____看作相应组中值的权.2、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊____只.3、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.4、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.5、一个样本的方差,则样本容量是_________,样本平均数是__________.三、解答题(5小题,每小题10分,共计50分)1、某校了解学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了________名学生;(2)补全条形统计图;(3)若该校共有1800名,估计爱好运动的学生有________人.2、在疫情防控期间,某市防控指挥部想了解各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们志愿服务的时间进行了统计,整理并绘制成如下的统计表和不完整的统计图.AaB10C16D20(1)本次被抽取的教职工共有            名;(2)表中a =         ,扇形统计图中“C”部分所占百分比为         %;(3)若该市共有30 000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?3、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?4、八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):78971010910101010879810109109(1)甲队成绩的中位数是      分,乙队成绩的众数是      分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是      队.5、在精准扶贫的政策下,某贫困户在当地政府的支持和帮助下办起了养殖业,经过一段时间的精心饲养,总量为6000只的一批兔子达到了出售标准,现从这批兔中随机选择部分进行称重,将得到的数据用下列统计图表示(频数分布直方图每组含前一个边界值,不含后一个边界值).根据以上信息,解答下列问题:(1)补全图中的频数分布直方图;(2)估计这批兔子中质量不小于1.7kg的有多少只. -参考答案-一、单选题1、D【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可.【详解】解:数字“20211202”中,共有4个“2”,∴数字“2”出现的频数为4,故选:D.【点睛】题目主要考查频数的定义,理解频数的定义是解题关键.2、B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.3、B【分析】根据平均数和方差的变化规律即可得出答案.【详解】a-1、b-1、c-1、d-1、e-1、f-1、g-1的平均数是m,方差是n∴数据abcdefg的平均数是m+1,方差是n
    ∴2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的平均数是2(m+1)-3=2m-1;
    ∵数据abcdefg的方差是n
    ∴数据2a-3、2b-3、2c-3、2d-3、2e-3、2f-3、2g-3的方差是22n=4n
    故选:B.【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.4、C【分析】根据平均数的定义:一组数据的总和除以这组数据的个数所得的商,叫做这组数据的算术平均数,简称平均数;众数的定义:一组数据中出现次数最多的数据;中位数的定义:一组数据中,处在最中间或处在最中间的两个数的平均数;方差的定义:一组数据中各个数据与它们平均数的差的平方的和的平均数,进行求解即可.【详解】解:由题意得它们的平均数为:,故选项A不符合题意;∵13出现的次数最多,∴众数是13,故B选项不符合题意;把这组数据从小到大排列为:10、11、12、12、13、13、13,处在最中间的数是12,∴中位数为12,故C选项符合题意;方差:,故D选项不符合题意;故选C.【点睛】本题主要考查了平均数,中位数,众数和方差,解题的关键在于能够熟知相关定义.5、D【分析】由平均数,中位数,众数,方差的定义逐项判断即可.【详解】A.第一组数据平均数为,第二组数据平均数为,有改变,故该选项不符合题意.B.由于不知道各数据具体数值,故无法比较中位数是否变化,故该选项不符合题意.C.由于不知道各数据具体数值,故无法比较众数是否变化,故该选项不符合题意.D.由第二组数据是把第一组数据都加1得到的一组新数据,平均数与差的平方的平均数没有改变,波动没变,所以方差不变,故该选项符合题意.故选:D.【点睛】本题考查平均数,中位数,众数,方差的定义.掌握方差是用来衡量一组数据波动大小的量,数据的波动情况不变,方差不会变是解答本题的关键.6、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论.【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a≠3中位数一定变化,不符合题意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键.7、B【分析】根据方差的意义及平均数、众数、中位数的定义求解可得.【详解】解:一组数据abcde的每一个数都加上同一数mm>0),则新数据ambm,…em的平均数在原来的基础上也增加m,数值发生了变化则众数和中位数也发生改变,方差描述的是它的离散程度,数据整体都加m,但是它的离散程度不变,即方差不变;故选:B.【点睛】本题主要考查统计量的选择,解题的关键是熟练掌握方差的意义与平均数、众数和中位数的定义.8、A【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为3.6、6.3,∴甲的方差小于乙的方差,∴甲秧苗出苗更整齐.故选:A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、D【分析】先根据平均成绩选出,然后根据方差的意义求出【详解】解:根据平均数高,平均成绩好得出的性能好,根据方差越小,数据波动越小可得出的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键10、B【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
    选择“5G时代”的人数为:30人,
    ∴选择“5G时代”的频率是:=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.二、填空题1、样本平均数    组中值    组中值    频数    【分析】(1)由样本平均数的适用条件即可得;(2)根据组中值的定义(组中值是上下限之间的中点数值,以代表各组标志值的一般水平),即可得(3)权数,指变量数列中各组标志值出现的频数,据此即可得.【详解】解:(1)如果所考察的对象很多,或对考察对象具有破坏性,统计中常常用样本平均数估计总体平均数;(2)组中值是上下限之间的中点数值,以代表各组标志值的一般水平,可得一个小组的两个端点的数的平均数叫做这个小组的组中值;(3)在频数分布表中,常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,故答案为:①样本平均数;②组中值;③组中值;④频数.【点睛】题目主要考查样本平均数,组中值,权数的定义及适用条件,熟练掌握这几个定义是解题关键.2、400【分析】设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.【详解】设这个地区有黄羊x只,由题意得解得则估计这个地区有黄羊400只.故答案为:400【点睛】本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.3、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.4、300【分析】设池塘大约有x只,根据题意,得到,计算即可.【详解】设池塘大约有x只,根据题意,得到解得 x=300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.5、12    3    【分析】方差公式为 ,其中n是样本容量,表示平均数.根据公式直接求解.【详解】解:∵一个样本的方差是
    ∴该样本的容量是12,样本平均数是3.
    故答案为:12,3.【点睛】此题考查方差的定义,解题的关键是熟练运用方差公式,此题难度不大.三、解答题1、(1)100;(2)见解析;(3)720【分析】(1)根据爱好娱乐人数的百分比,以及娱乐人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数、运动人数、以及上网的人数,从而可补全图形.(3)利用样本估计总体即可估计爱好运动的学生人数.【详解】解:(1)爱好娱乐的人数为15,所占百分比为15%,∴共调查人数为:15÷15%=100.故填:100.(2)爱好上网人数为:100×10%=10,爱好运动人数为:100×40%=40,爱好阅读人数为:100-15-10-40=35,补全条形统计图,如图所示:(3)爱好运动的学生人数所占的百分比为40%,则:该校共有学生大约有:1800×40%=720人;所以,若该校共有1800名,估计爱好运动的学生有720人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,会从图标中获取有用信息.2、(1)50;(2)4,32;(3)21600【分析】(1)由B等级的人数及其所占百分比即可求出被调查的总人数;
    (2)用总人数减去BCD的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;
    (3)用总人数乘以样本中CD人数所占比例即可.【详解】解:(1)本次被抽取的教职工共有10÷20%=50(名),
    故答案为:50;
    (2)a=50−(10+16+20)=4,
    扇形统计图中“C”部分所占百分比为×100%=32%,
    故答案为:4,32;
    (3)志愿服务时间多于60小时的教职工大约有30000×=21600(人).【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息.3、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4、(1)9.5,10;(2)平均成绩9分,方差1;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;
    (2)先求出乙队的平均成绩,再根据方差公式进行计算;
    (3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1x2,…xn的平均数为,则方差S2 [(x12+(x22+…+(xn2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、(1)见解析;(2)960只【分析】(1)先根据D组的频数和占比求出抽取兔子的数量,然后求出C组兔子的数量,最后补全统计图即可;(2)先求出样本中这批兔子中质量不小于1.7kg的百分比,然后估计总体即可.【详解】解:(1)抽取兔子的数量是则质量在“C”部分的兔子数量是(只).补全频数分布直方图如下:(2)由题意得:这批兔子中质量不小于1.7kg的大约有(只).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,补全条形统计图,解题的关键在于能够正确理解题目所示的统计图. 

    相关试卷

    2021学年第十七章 方差与频数分布综合与测试练习题:

    这是一份2021学年第十七章 方差与频数分布综合与测试练习题,共19页。试卷主要包含了某校八年级人数相等的甲等内容,欢迎下载使用。

    北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题:

    这是一份北京课改版八年级下册第十七章 方差与频数分布综合与测试同步测试题,共22页。试卷主要包含了下列说法中正确的是.等内容,欢迎下载使用。

    初中数学第十七章 方差与频数分布综合与测试同步达标检测题:

    这是一份初中数学第十七章 方差与频数分布综合与测试同步达标检测题,共21页。试卷主要包含了一组数据等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map