初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练
展开
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试课时训练,共19页。试卷主要包含了下列方程是一元二次方程的是,不解方程,判别方程的根的情况是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一元二次方程x25x+k =0的一根为2,则另一个根为( )A.3 B.4 C.5 D.62、一元二次方程根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断3、若关于x的一元二次方程的一根为1,则k的值为( ) .A.1 B. C. D.04、关于x的方程有两个不相等的实数根,则n的取值范围是( )A.n< B.n ≤ C.n> D.n>5、下列方程是一元二次方程的是( )A. B.C. D.6、不解方程,判别方程的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定7、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )A. B. C. D.8、某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.A.8 B.9 C.10 D.119、某公司去年的各项经营中,九月份的营业额为200万,十一月的营业额为950万元,如果平均每月营业额的增长率相同,设这个增长率为,则可列方程得( )A. B.C. D.10、把方程化成(a,b为常数)的形式,a,b的值分别是( ).A.2,7 B.2,5 C.,7 D.,5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程ax2+bx+2=0(a≠0)的一个解是x=1,则a+b的值为 _____.2、若关于x的一元二次方程x2-2x+m=0有一个根为1,则m的值为_______.3、已知是关于的方程的一个根,则______.4、若关于x的方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,称此方程为“月亮”方程,已知方程a2x2﹣1999ax+1=0(a≠0)是“月亮”方程,求a2+1999a+的值为 _____.5、甲公司前年缴税100万元,今年缴税121万元,则该公司缴税的年平均增长率 _____.三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解方程.(1)(2)2、已知,如图,在平面直角坐标系内,点A的坐标为(0,12),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(﹣9,3).(1)求直线l1,l2的表达式;(2)点C为直线OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为n,求点D的坐标(用含n的代数式表示);②若矩形CDEF的面积为48,请直接写出此时点C的坐标.3、数学兴趣小组的李舒和林涵两位同学用棋子摆图形探究规律.若两人都按照各自的规律继续摆下去,请回答下列问题:如图1李舒摆成的图形:如图2林涵摆成的图形:(1)填写下表:图形序号1234 n李舒所用棋子数111621 林涵所用棋子数149 (2)是否存在某个图形恰好含有76个棋子?若存在,请求出该图形序号,若不存在,请说明理由;(3)哪位同学所摆的某个图形含有棋子个数先超过120个?请说明理由.(4)两位同学所摆图形中,是否存在所需棋子数相同的图形,若存在,请直接写出该图形序号,若不存在,请说明理由.4、解方程:(1) x(x -2)+ x -2 = 0 (2) x2 - 4x + 1 = 0 (用配方法)5、某地区2019年投入教育经费2500万元,2021年投入教育经费3025万元.求2019年至2021年该地区投入教育经费的年平均增长率. -参考答案-一、单选题1、A【分析】设方程的另一根为t,根据根与系数的关系得到2+t=5,求出t即可.【详解】解:设方程的另一根为t,根据题意得2+t=5,解得t=3.故选A.【点睛】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=,x1·x2=.2、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况.【详解】∵,,,∴,∴方程有有两个不相等的实数根.故选:A【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.3、B【分析】把方程的根代入方程可以求出k的值.【详解】解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键.4、A【分析】利用判别式的意义得到△=>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)²﹣4n>0,解得n< .故选:A.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.5、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.【详解】A.有两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C.【点睛】本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.6、A【分析】利用根的判别式进行求解并判断即可.【详解】解:原方程中,,,,,原方程有两个不相等的实数根故选:A.【点睛】熟练掌握根的判别式是解答此题的关键,当>0有两不相等实数根,当=0有两相等实数根,当<0没有实数根.7、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,∴,∴,即,故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.8、A【分析】设该校八年级有x个班级,利用比赛的总场次数=参赛的班级数×(参赛的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设该校八年级有x个班级,依题意得:x(x﹣1)=28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).故选:A.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.9、C【分析】根据增长率的意义,列式即可.【详解】设这个增长率为,根据题意,得,故选C.【点睛】本题考查了一元二次方程的应用,增长率问题,熟练增长率问题计算特点是解题的关键.10、C【分析】利用配方法将一元二次方程进行化简变形即可得.【详解】解:,,,,∴,,故选:C.【点睛】题目主要考查利用配方法将一元二次方程进行变形,熟练掌握配方法是解题关键.二、填空题1、-2【分析】根据一元二次方程解得定义把代入到进行求解即可.【详解】解:∵关于x的一元二次方程的一个解是,∴,∴,故答案为:-2.【点睛】本题主要考查了一元二次方程解得定义,代数式求值,熟知一元二次方程解的定义是解题的关键.2、【分析】根据关于x的方程x2-2x+m=0的一个根是1,将x=1代入可以得到m的值,本题得以解决.【详解】解:∵关于x的方程x2-2x+m=0的一个根是1,∴1-2+m=0,解得m=1,故答案为:1.【点睛】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.3、2025【分析】把代入方程可得再把化为,再整体代入求值即可.【详解】解: 是关于的方程的一个根, 故答案为:【点睛】本题考查的是方程的解,求解代数式的值,掌握“利用整体代入法求解代数式的值”是解本题的关键.4、-2【分析】根据“月亮”方程的定义得出,变形为代入计算即可.【详解】解:∵方程是“月亮”方程,∴,∴,∴ 故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边都相等的未知数的值是一元二次方程的解.利用整体代入的方法计算是解决本题的关键.5、10%【分析】设公司缴税的年平均增长率为x,根据增长后的纳税额=增长前的纳税额×(1+增长率),即可得到去年的纳税额是100(1+x)万元,今年的纳税额是100(1+x)2万元,据此即可列出方程求解.【详解】解:设该公司缴税的年平均增长率为x,依题意得100(1+x)2=121解方程得x1=0.1=10%,x2=﹣2.1(舍去)所以该公司缴税的年平均增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的实际应用---增长率问题,认真审题找到等量关系是是解题的关键.三、解答题1、(1),;(2)【分析】(1)提取公因式(x-2),利用因式分解法求解即可求得答案;(2)利用因式分解法求解即可求得答案.【详解】解:(1) ∴, (2) ∴【点睛】此题考查了一元二次方程的解法.注意选择适宜的解题方法是解此题的关键.2、(1)y=﹣x,y=x+12;(2)①(﹣3n,﹣3n+12);②(3,﹣1)或C(﹣12,4)【分析】(1)从图中看以看出l1是正比例函数,l2是一次函数,根据点A、B的坐标,用待定系数法即可求得l1、l2的解析式;(2)①已知点C的纵坐标及点C在直线l1上,求得点C的横坐标;进而知道了点D的横坐标,点D在直线l2上,易得点D的坐标;②根据点C与点D坐标,求出CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,利用矩形的面积=长×宽,列出关于n的方程,解方程即可.【详解】解:(1)设直线l1的表达式为y=k1x,∵过点B(﹣9,3),∴﹣9k1=3,解得:k1=﹣,∴直线l1的表达式为y=﹣x;设直线l2的表达式为y=k2x+b,∵过点A (0,12),B(﹣9,3),∴,解得:,∴直线l2的表达式y=x+12;(2)①∵点C在直线l1上,且点C的纵坐标为n,∴n=﹣x,解得:x=﹣3n,∴点C的坐标为(﹣3n,n),∵CD∥y轴,∴点D的横坐标为﹣3n,∵点D在直线l2上,∴y=﹣3n+12,∴D(﹣3n,﹣3n+12);②∵C(﹣3n,n),D(﹣3n,﹣3n+12),∴CF=|3n|,CD=|﹣3n+12﹣n|=|﹣4n+12|,∵矩形CDEF的面积为60,∴S矩形CDEF=CF•CD=|3n|×|﹣4n+12|=48,解得n=﹣1或n=﹣4,当n=﹣1时,﹣3n=3,故C(3,﹣1),当n=4时,﹣3n=1﹣12,故C(﹣12,4).综上所述,点C的坐标为:(3,﹣1)或C(﹣12,4).【点睛】本题考查待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程,掌握待定系数法求一次函数的解析式,勾股两点距离,矩形面积,解一元二次方程是解题关键.3、(1)图形序号1234 n李舒所用棋子数11162126 林涵所用棋子数14916 ;(2)李舒所摆图形的第14图形恰好含有76个棋子;林涵所摆的图形中没有恰好含有76个棋子的;(3)林涵同学所摆的第11个图形含有棋子个数先超过120个;(4)两位同学所摆图形中,第6个图形所需棋子数相同.
【解析】【分析】(1)根据所给图形和表格找到每个同学所摆图形所需棋子个数的规律,并用代数式表示,即可填写表格;(2)令(1)所总结的两个代数式分别等于76,解出结果是整数的即为恰好含有76个棋子的图形;(3)令(1)所总结的两个代数式分别等于120,解出结果更小的,就说明那个同学所摆的图形含有棋子个数先超过120个;(4)令(1)所总结的两个代数式相等,即列出关于n的一元二次方程,解出n即可.【详解】(1)根据李舒所用棋子数:第1图形:,第2图形:,第3图形:,∴第4图形的棋子数为:,…第n图形的棋子数为:;林涵所用棋子数:第1图形:,第2图形:,第3图形:,∴第4图形的棋子数为:,…第n图形的棋子数为:.故可填表为:图形序号1234 n李舒所用棋子数11162126 林涵所用棋子数14916 (2),解得:,∴李舒所摆图形的第14图形恰好含有76个棋子;,解得:,∴林涵所摆的图形中没有恰好含有76个棋子的;(3),解得:,∴李舒所摆图形的第23图形开始超过120个;,解得:,∴林涵所摆图形的第11图形开始超过120个;故林涵同学所摆的第11个图形含有棋子个数先超过120个;(4),解得:,(舍)故:两位同学所摆图形中,第6个图形所需棋子数相同.【点睛】本题考查图形类规律探索,一元二次方程的实际应用.根据所给图形和表格找到每个同学所摆图形所需棋子个数的规律,并用代数式表示是解答本题的关键.4、(1),;(2),.【分析】(1)根据因式分解法解方程即可得;(2)利用配方法将等号左边变为完全平方公式,然后开方求解即可.【详解】解:(1),,∴或,解得:,;(2),,,∴或,解得:,.【点睛】题目主要考查解一元二次方程的因式分解法和配方法,熟练运用两种方法是解题关键.5、这两年投入教育经费的年平均增长率为【分析】根据等量关系:2019年投入教育经费×(1+x)2=2021年投入教育经费列方程求解即可.【详解】解:设2019年至2021年该地区投入教育经费的年平均增长率为,根据题意,得,解得:,或(不合题意舍去),答:这两年投入教育经费的年平均增长率为.【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课时作业,共18页。试卷主要包含了如图,某学校有一块长35米,已知方程的两根分别为m等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十六章 一元二次方程综合与测试同步达标检测题,共16页。试卷主要包含了下列所给方程中,没有实数根的是,如图,某学校有一块长35米等内容,欢迎下载使用。
这是一份2020-2021学年第十六章 一元二次方程综合与测试习题,共18页。试卷主要包含了已知关于x的一元二次方程x2﹣等内容,欢迎下载使用。