数学第十六章 一元二次方程综合与测试课后测评
展开
这是一份数学第十六章 一元二次方程综合与测试课后测评,共16页。试卷主要包含了下列方程是一元二次方程的是,下列所给方程中,没有实数根的是等内容,欢迎下载使用。
京改版八年级数学下册第十六章一元二次方程专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,且x12+x22=5,则k的值是( )A.﹣2 B.2 C.﹣1 D.12、若关于x的一元二次方程的一根为1,则k的值为( ) .A.1 B. C. D.03、下列方程中是一元二次方程的是( )A.2x+1=0 B.y2+x=1 C.x2+1=0 D.4、一元二次方程x2+2x=1的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定5、若关于x的一元二次方程有一个根是,则a的值为( )A. B.0 C.1 D.或16、下列方程是一元二次方程的是( )A. B.C. D.7、老师设计了一个游戏,用合作的方式解一元二次方程,规则是:每人只能看到前一个人计算的步骤,并进行下一步计算,再将结果传递给下一个人,最后得到方程的解.过程如图:接力中,自己负责的一步出现错误的学生人数是( )
A.1 B.2 C.3 D.48、下列所给方程中,没有实数根的是( )A. B.C. D.9、已知m,n是方程的两根,则代数式的值等于( )A.0 B. C.9 D.1110、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知是关于的方程的一个根,则______.2、若为整数,关于的一元二次方程有实数根,则整数的最大值为__________.3、若关于的一元二次方程有实数根,则实数的取值范围是__________.4、一元二次方程3x2﹣6x=0的根是_____.5、已知关于的一元二次方程有一个根为1,一个根为,则_________,__________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(x﹣5)2=(2﹣3x)2;(2)x2﹣10x+16=0;(3)2x2﹣x﹣2=0.2、(1)用配方法解方程:.(2)当岚岚用因式分解法解一元二次方程时,她是这样做的:解:原方程可以化简为.……………………………………第一步两边同时除以.得. ………………………………………………第二步系数化为1,得.………………………………………………………………第三步①岚岚的解法是不正确的,她从第________步开始出现了错误.②请完成这个方程的正确解题过程.3、解方程:2x2+x﹣15=0.4、小林准备如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段在桌面上各围成一个正方形.(1)要使这两个正方形的面积之和为,小林该如何剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于.”他说的对吗?请说明理由.5、已知是方程的一个根,求代数式的值. -参考答案-一、单选题1、D【分析】用根与系数的关系可用k表示出已知等式,可求得k的值.【详解】解:∵关于x的一元二次方程x2﹣kx+k﹣3=0的两个实数根分别为x1,x2,∴x1+x2=k,x1x2=k﹣3,∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,∴k2﹣2(k﹣3)=5,整理得出:k2﹣2k+1=0,解得:k1=k2=1,故选:D.【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2、B【分析】把方程的根代入方程可以求出k的值.【详解】解:把1代入方程有:
1+2k+1=0,
解得:k=-1,
故选:B.【点睛】本题考查的是一元二次方程的解,正确理解题意是解题的关键.3、C【详解】解:A、未知数次数是1,不是一元二次方程,故本选项不符合题意;B、含有2个未知数,不是一元二次方程,故本选项不符合题意;C、是一元二次方程,故本选项符合题意;D、分母中含有未知数,不是一元二次方程,故本选项不符合题意;故选:C【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有1个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.4、A【分析】方程整理后得出x2+2x﹣1=0,求出Δ=8>0,再根据根的判别式的内容得出答案即可.【详解】解:x2+2x=1,整理得,x2+2x﹣1=0,∵Δ=22﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数根,故选:A.【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.5、A【分析】把代入方程得出,再求出方程的解即可.【详解】∵关于x的一元二次方程有一个根是∴解得∵一元二次方程∴∴∴故选:A.【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零.6、C【分析】判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.【详解】A.有两个未知数,错误;B.不是整式方程,错误;C.符合条件;D.化简以后为,不是二次,错误;故选:C.【点睛】本题考查一元二次方程的定义.根据一元二次方程的定义,一元二次方程有三个特点:
(1)只含有一个未知数;
(2)未知数的最高次数是2;
(3)是整式方程.7、D【分析】先把方程化为一般形式,再把左边分解因式,可判断甲,再把方程化为两个一次方程,可判断乙,再解一次方程,移项要改变符号,可判断丙,再计算得到方程的解可判断丁,从而可得答案.【详解】解: ,,,故甲出现错误; 即 或 故乙出现了错误;而丙解方程时,移项没有改变符号,丁出现了计算错误;所以出现错误的人数是4人,故选D【点睛】本题考查的是利用因式分解法解一元二次方程,掌握“利用因式分解法解一元二次方程的步骤”是解本题的关键.8、D【分析】逐一求出四个选项中方程的根的判别式Δ的值,取其小于零的选项即可得出结论.【详解】解:A、∵Δ=(﹣2)2﹣4×1×0=4>0,∴一元二次方程有两个不相等的实数根; B、∵Δ=(﹣4)2﹣4×5×(-2)=56>0,∴一元二次方程有两个不相等的实数根;C、∵Δ=(﹣4)2﹣4×3×1=4>0,∴一元二次方程有两个不相等的实数根; D、∵Δ=(﹣3)2﹣4×4×2=-23<0,∴一元二次方程没有实数根.故选:D.【点睛】本题考查了一元二次方程根的判别式,牢记“当Δ<0时,一元二次方程没有实数根”是解题的关键.9、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得, ,从而得到,再代入,即可求解.【详解】解:∵m,n是方程的两根,∴, ,∴,∴.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若,是一元二次方程 的两个实数根,则,是解题的关键.10、A【分析】根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.【详解】∵方程有两个不相等的实数根,∴判别式△>0,∴,∴a<4,故选A.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.二、填空题1、2025【分析】把代入方程可得再把化为,再整体代入求值即可.【详解】解: 是关于的方程的一个根, 故答案为:【点睛】本题考查的是方程的解,求解代数式的值,掌握“利用整体代入法求解代数式的值”是解本题的关键.2、3【分析】根据一元二次方程的二次项的系数不等于0、根的判别式求出的取值范围,由此即可得出答案.【详解】解:由题意得:,解得,且,为整数,整数的最大值为3,故答案为:3.【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键.3、且【分析】直接利用一元二次方程的定义结合根的判别式计算得出答案.【详解】解:∵关于x的一元二次方程kx2﹣x﹣=0有实数根,∴ b2﹣4ac=1﹣4k×(﹣)=1+9k≥0,且k≠0, 解得: 且,故答案为:且.【点睛】此题考查利用一元二次方程的定义及根的判别式求系数,正确理解一元二次方程根的三种情况是解题的关键,当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4、x1=2,x2=0【分析】根据因式分解法即可求出答案.【详解】解:∵3x2﹣6x=0,∴3x(x﹣2)=0,∴3x=0或x﹣2=0,∴x1=2,x2=0,故答案为:x1=2,x2=0.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.5、0 0 【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:,即;将﹣1代入方程得:,即;故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.三、解答题1、(1)x1=,x2=﹣;(2)x1=2,x2=8;(3)x1=,x2=﹣.【分析】(1)直接利用因式分解的方法解一元二次方程即可;(2)直接利用因式分解的方法解一元二次方程即可;(3)直接利用因式分解的方法解一元二次方程即可.【详解】解:(1)∵(x﹣5)2=(2﹣3x)2,∴,∴,∴解得:x1=,x2=;(2)∵x2﹣10x+16=0,∴(x﹣2)(x﹣8)=0,∴x﹣2=0或x﹣8=0,解得x1=2,x2=8;(3)∵,∴,∴,∴,.【点睛】本题主要考查了解一元二次方程 ,解题的关键在于能够熟练掌握解一元二次方程的方法.2、(1),;(2)①二;②,【详解】解:(1)配方,得,即.由此可得.解得,.(2)①第二步在两边同时除以时未考虑的情况,故第二步错误.故答案为:二;②正确的解答过程如下:原方程可以化简为.移项,得.因式分解,得.由此可得或.解得,.【点睛】本题考查解一元二次方程,熟练掌握该知识点是解题关键.3、或;【分析】利用十字相乘法把方程左边进行因式分解得到(2x5)(x+3)=0,进而解两个一元一次方程即可.【详解】解:,∴,∴或,∴或;【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,题目比较好,难度适中.4、(1)剪成的两段分别为12cm,28cm;(2)小峰的说法正确,理由见解析【分析】(1)设剪成的两段分别为,,然后由题意得,进而问题可求解;(2)设剪成的两段分别为,,然后由题意得,进而问题可求解.【详解】解:设剪成的两段分别为,.(1)根据题意,得,解得,.当时,;当时,.∴剪成的两段分别为12cm,28cm.(2)根据题意,得,整理,得.∵,∴该方程无解,∴小峰的说法正确.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.5、6【分析】把代入方程,得出,再整体代入求值即可.【详解】解: = . ∵ a是方程的根 ∴ . ∴ . ∴ 原式 = 6.【点睛】本题考查了一元二次方程的解和代数式求值,解题关键是明确方程解的意义,整体代入求值.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试课后练习题,共17页。试卷主要包含了小亮,下列方程中是一元二次方程的是,一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份2020-2021学年第十六章 一元二次方程综合与测试精练,共19页。试卷主要包含了用配方法解方程,则方程可变形为等内容,欢迎下载使用。
这是一份2021学年第十六章 一元二次方程综合与测试复习练习题,共19页。试卷主要包含了方程的解是等内容,欢迎下载使用。