北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试
展开
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试达标测试,共17页。
京改版八年级数学下册第十六章一元二次方程章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、方程的解是( )A.6 B.0 C.0或6 D.-6或02、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为( )A.﹣2 B.2 C.﹣4 D.43、下列方程中,是一元二次方程的个数有( )(1)x2+2x+1=0;(2)++2=0;(3)x2-2x+1=0;(4)(a-1)x2+bx+c=0;(5)x2+x=4-x2.A.2个 B.3个 C.4个 D.5个4、将一元二次方程通过配方转化为的形式,下列结果中正确的是( )A. B. C. D.5、已知关于x的方程有两个不相等的实数根,则a的值可能为( ).A.3 B.4 C.5 D.66、下列方程中一定是一元二次方程的是( )A.x2﹣4=0 B.ax2+bx+c=0 C.x2﹣y+1=0 D.+x﹣1=07、中秋佳节前某月饼店7月份的销售额是2万元,9月份的销售额是4.5万元,从7月份到9月份,该店销售额平均每月的增长率是( )A.20% B.25% C.50% D.62.5%8、用配方法解方程x2+2x=1,变形后的结果正确的是( )A.(x+1)2=-1 B.(x+1)2=0 C.(x+1)2=1 D.(x+1)2=29、若m是方程2x2﹣3x﹣1=0的一个根,则﹣6m2+9m﹣13的值为( )A.﹣16 B.﹣13 C.﹣10 D.﹣810、在等式①;②;③;⑤;⑤中,符合一元二次方程概念的是( )A.①⑤ B.① C.④ D.①④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x的一元二次方程(k+1)x2+2x﹣1=0有实数根,则k的取值范围是 _____.2、已知关于x的方程有两个不相等的实数根,那么m的取值范围是______.3、如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为660平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为______________.4、己知t是方程x2﹣x﹣2=0的根,则式子2t2﹣2t+2021的值为_____.5、下面是用配方法解关于的一元二次方程的具体过程,解:第一步:第二步:第三步:第四步:,以下四条语句与上面四步对应:“①移项:方程左边为二次项和一次项,右边为常数项;②求解:用直接开方法解一元二次方程;③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;④二次项系数化1,方程两边都除以二次项系数”,则第一步,第二步,第三步,第四步应对应的语句分别是________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)x2﹣6x﹣4=0;(2)3x(x+1)=3x+3.2、解方程:.3、阅读与思考配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和.巧妙的运用“配方法”能对一些多项式进行因式分解.例如: (1)解决问题:运用配方法将下列多项式进行因式分解①;②(2)深入研究:说明多项式的值总是一个正数?(3)拓展运用:已知a、b、c分别是的三边,且,试判断的形状,并说明理由.4、 “惠民政策”陆续出台,老百姓得到实惠,某种心脏支架原价10000元一副,经过连续两次降价后,现在仅卖729元一副,求该种支架平均每次降价的百分率.5、用适当的方法解下列方程:(1)(x﹣1)2=9;(2)x2+4x﹣1=0.(3)3(x﹣5)2=4(5﹣x).(4)x2﹣4x+10=0. -参考答案-一、单选题1、C【分析】根据一元二次方程的解法可直接进行求解.【详解】解:,解得:;故选C.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.2、B【分析】根据根的含义将代入一元二次方程x2+k﹣3=0求解即可.【详解】解:∵一元二次方程x2+k﹣3=0有一个根为1,∴将代入得,,解得:.故选:B.【点睛】此题考查了已知一元二次方程的解求参数,解题的关键是熟练掌握一元二次方程解得概念.3、B【分析】根据一元二次方程的定义(只含有一个未知数,且未知数的最高次数为二次的整式方程,且二次项系数不为0)依次进行判断即可.【详解】解:(1)是一元二次方程; (2)不是一元二次方程;(3)是一元二次方程;(4),的值不确定,不是一元二次方程;(5)是一元二次方程,共3个,故选:B.【点睛】题目主要考查一元二次方的定义,深刻理解这个定义是解题关键.4、A【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可.【详解】解:∵,∴,∴,即,故选A.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5、A【分析】根据方程有两个不相等的实数根,判别式△>0,确定a的取值范围,判断选择即可.【详解】∵方程有两个不相等的实数根,∴判别式△>0,∴,∴a<4,故选A.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.6、A【分析】利用一元二次方程定义进行解答即可.【详解】解:A、是一元二次方程,故此选项符合题意;B、当a=0时,不是一元二次方程,故此选项不合题意;C、含有两个未知数,不是一元二次方程,故此选项不合题意;D、未知数次数为1,不是一元二次方程,故此选项不合题意;故选:A.【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7、C【分析】设该商店销售额平均每月的增长率为x,利用9月份的销售额=7月份的销售额×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出该商店销售额平均每月的增长率为50%.【详解】解:设该商店销售额平均每月的增长率为x,依题意得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).∴该商店销售额平均每月的增长率为50%.故选:C.【点睛】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.8、D【分析】方程两边同时加上一次项系数一半的平方即可得到答案.【详解】解:∵x2+2x=1,
∴x2+2x+1=1+1,
∴(x+1)2=2,
故选D.【点睛】本题考查配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.9、则此三角形的周长是1故选:C.【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.5.A【分析】将m代入2x2﹣3x﹣1=0可得2m2﹣3m﹣1=0,再化简所求代数为﹣6m2+9m﹣13=-3(2m2﹣3m)﹣13,即可求解.【详解】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴﹣6m2+9m﹣13=﹣3(2m2﹣3m)﹣13=﹣3×1﹣13=﹣16,故选:A.【点睛】本题考查一元二次方程的解,熟练掌握一元二次方程的解与一元二次方程的关系,灵活变形所求代数式是解题的关键.10、B【分析】根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐个分析判断即可.【详解】解:①,是一元二次方程,符合题意;②,不是方程,不符合题意;③,不是整式方程,不符合题意;⑤,是二元一次方程,不符合题意;⑤,是一元一次方程,不符合题意故符合一元二次方程概念的是①故选B【点睛】本题考查了一元二次方程定义,掌握一元二次方程定义是解题的关键.二、填空题1、且【分析】利用一元二次方程的定义和根的判别式的意义得到k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,然后求出两个不等式的公共部分即可.【详解】解:根据题意得k+1≠0且Δ=22﹣4×(k+1)×(﹣1)≥0,解得k≥﹣2且k≠﹣1.故答案为:k≥﹣2且k≠﹣1.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式等知识,是重要考点,难度较小,掌握相关知识是解题关键.2、且【分析】根据“关于x的方程有两个不相等的实数根”,结合判别式公式,得到关于m的一元一次不等式,解之即可.【详解】解:根据题意得:
Δ=9+4m>0且 ,
解得:m>-且,
故答案为:m>-且.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式Δ>0,找出关于m的一元一次不等式组是解题的关键.3、(35-2x)(20-x)=660【分析】若设小道的宽为x米,则阴影部分可合成长为(35-2x)米,宽为(20-x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解【详解】解:依题意,得:(35-2x)(20-x)=660.故答案为:(35-2x)(20-x)=660.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4、2025【分析】根据一元二次方程的解的定义得到t2-t-2=0,则t2-t=2,然后把2t2-2t+2021化成2(t2-t)+2021,再利用整体代入的方法计算即可.【详解】解:当x=t时,t2-t-2=0,则t2-t=2,所以2t2-2t+2021=2(t2-t)+2021=4+2021=2025.故答案为:2025.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.用了整体代入思想.5、④①③②【分析】根据配方法的步骤:二次项系数化为1,移项,配方,求解,进行求解即可.【详解】解:根据配方法的步骤可知:第一步为:④二次项系数化1,方程两边都除以二次项系数;第二步为:①移项:方程左边为二次项和一次项,右边为常数项;第三步为:③配方:根据完全平方公式,在方程的两边各加上一次项系数一半的平方;第四步为:②求解:用直接开方法解一元二次方程;故答案为:④①③②.【点睛】本题主要考查了配方法解一元二次方程,熟知配方法的步骤是解题的关键.三、解答题1、(1)x1=+3,x2=-+3(2)x1=-1,x2=1【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2﹣6x﹣4=0x2﹣6x+9=13(x-3)2=13x-3=±∴x1=+3,x2=-+3(2)3x(x+1)=3x+33x(x+1)-3(x+1)=03(x+1)(x-1)=0∴x+1=0或x-1=0∴x1=-1,x2=1.【点睛】此题主要考查解一元二次方程,解题的关键是熟知配方法与因式分解法的运用.2、,【分析】先用根的判别式判断根是否存在,然后再利用求根公式解答即可.【详解】解:∵,∴,即,.【点睛】本题主要考查了运用公式法解一元二次方程,牢记一元二次方程的求根公式()是解答本题的关键.3、(1)①;②;(2)见解析;(3)等边三角形,理由见解析【分析】(1)仿照例子运用配方法进行因式分解即可;(2)利用配方法和非负数的性质进行说明即可;(3)展开后利用分组分解法因式分解后利用非负数的性质确定三角形的三边的关系即可.【详解】解:(1)①.②(2)∵∴∴多项式的值总是一个正数.(3)为等边三角形.理由如下:∵∴∴∴,∴∴为等边三角形.【点睛】本题考查了因式分解的应用,解题的关键是仔细阅读材料理解配方的方法.4、该种支架平均每次降价的百分率为73%.【分析】设平均每次降价的百分率为x,则第一次降价后的单价是原来的(1﹣x),第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【详解】解:设该种支架平均每次降价的百分率为x,由题意得:10000(1﹣x)2=729,解得:x1=0.73,x2=1.27(不合题意舍去),∴x=0.73=73%,答:该种支架平均每次降价的百分率为73%.【点睛】此题主要考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、(1)x1=4,x2=﹣2(2)(3)(4)【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可.(3)先移项,再利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.(4)先判断是否有解,若有解,可直接利用公式法求解即可.(1)解:(x﹣1)2=9,∴x﹣1=3或x﹣1=﹣3,∴x1=4,x2=﹣2.(2)解:x2+4x﹣1=0,x2+4x=1,x2+4x+4=1+4,即(x+2)2=5,∴x+2=或x+2=﹣,∴x1=﹣2+,x2=﹣2﹣.(3)解:∵3(x﹣5)2=4(5﹣x),∴3(x﹣5)2+4(x﹣5)=0,∴(x﹣5)(3x﹣11)=0,则x﹣5=0或3x﹣11=0,解得x1=5,x2=.(4)解:∵a=1,b=﹣4,c=10,∴Δ=(﹣4)2﹣4×1×10=8>0,∴x===2±,∴,.【点睛】本题考查了一元二次方程的解法,要根据不同的方程采取不同的方法,解题时要先判断方程是否有根.
相关试卷
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试练习,共16页。试卷主要包含了若a是方程的一个根,则的值为,下列事件为必然事件的是等内容,欢迎下载使用。
这是一份初中第十六章 一元二次方程综合与测试一课一练,共17页。试卷主要包含了一元二次方程的根的情况是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十六章 一元二次方程综合与测试复习练习题,共14页。试卷主要包含了一元二次方程的解是.,方程的解是,下列方程中是一元二次方程的是,若a是方程的一个根,则的值为等内容,欢迎下载使用。