


数学七年级下册第九章 数据的收集与表示综合与测试随堂练习题
展开
这是一份数学七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。试卷主要包含了下列调查中,适合采用全面调查等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有( )
A.这种调查的方式是抽样调查B.800名学生是总体
C.每名学生的期中数学成绩是个体D.100名学生的期中数学成绩是总体的一个样本
2、已知一组数据3,7,5,3,2,这组数据的众数为( )
A.2B.3C.4D.5
3、在“支援河南洪灾”捐款活动中,某班级8名同学积极捐出自己的零花钱,奉献爱心,他们捐款的数额分别是(单位:元):60,25,60,30,30,25,65,60.这组数据的众数和中位数分别是( )
A.60,30B.30,30C.25,45D.60,45
4、一组数据2,9,5,5,8,5,8的中位数是( )
A.2B.5C.8D.9
5、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):
则鞋厂最感兴趣的是这组数据的( )
A.平均数B.中位数C.众数D.方差
6、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
7、某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:
根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )
A.3,3B.3,7C.2,7D.7,3
8、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
9、学校快餐店有12元,13元,14元三种价格的饭菜供师生选择(每人限购一份).下图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( )
A.12.95元,13元B.13元,13元C.13元,14元D.12.95元,14元
10、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项B.4项C.5项D.6项
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校有3000名学生,随机抽取了300名学生进行体重调查.该问题中样本是_______________.
2、甘肃省白银市广播电视台欲招聘播音员一名,对甲、乙两名候选人进行了两项素质测试,两人的两项测试成绩如下表所示:
根据需要广播电视台将面试成绩、综合知识测试成绩按3∶2的比例确定两人的最终成绩,那么_______将被录取.
3、数据25,23,25,27,30,25的众数是 _____.
4、、、三种糖果售价分别为每千克10元,11元,14元.若将种糖果3kg,种糖果2kg,种糖果1kg混在一起,则售价应定为每千克______元.
5、某项比赛对专业和才艺两方面评分的权重分别设为80%和20%.A同学专业得分为90分,才艺得分为80分,A同学的平均分是 _____分.
三、解答题(5小题,每小题10分,共计50分)
1、为响应“双减”政策,老师们都精心设计每天的作业,兴华学校调查了部分学生每天完成作业所用时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:
(1)将条形统计图补充完整;
(2)抽查学生完成作业所用时间的众数是______;
(3)求所有被抽查学生完成作业所用的平均时间.
2、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.
(1)本次活动共有多少篇论文参加评比?
(2)哪组上交的论文数量最多?是多少?
(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?
3、某校为了了解八、九年级男生立定跳远情况,现从八、九年级男生中各随机抽取了名学生进行了测试,这些学生的成绩记为(厘米),对数据进行整理,将所得的数据分为组:(组:;组:;组:;组:;组:),学校对数据进行分析后,得到如下部分信息:
A.八年级被抽取的男生立定跳远成绩频数分布直方图
B.九年级被抽取的男生立定跳远成绩扇形统计图
C.八年级被抽取的男生的立定跳远成绩在这一组的数据是:
D.九年级被抽取的男生的立定跳远成绩在这一组的数据是:
E.八、九年级男生立定跳远成绩的平均数、中位数、众数如下:
根据以上信息,解答下列问题:
(1)填空:______,______;
(2)若该校八年级有男生人、九年级有男生人,估计这两个年级男生立定跳远成绩不低于的人数一共多少人;
(3)根据以上数据分析,你认为该校八、九年级中哪个年级的男生立定跳远成绩更优异,请说明理由.(写出一条理由即可)
4、学校小卖部有A,B,C,D,E五种冷饮销售,它们的单价依次是5元、3元、2元、1元和0.5元.某天的冷饮销售情况如图所示,那么,这天该小卖部销售的冷饮的单价的平均值是多少元?
5、在学校内随机调查20位男同学所穿运动鞋的尺码,计算它们的平均数.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.
【详解】
解:A、题中的调查方式为抽样调查,选项正确,不符合题意;
B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;
C、每名学生的期中数学成绩是个体,选项正确,不符合题意;
D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;
故选B
【点睛】
本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.
2、B
【解析】
【分析】
根据众数的定义(一组数据中,出现次数最多的数据,叫这组数据的众数)即可求出这组数据的众数.
【详解】
解:在这组数据中3出现了2次,出现的次数最多,则这组数据的众数是3;
故选:B.
【点睛】
此题考查了众数的定义;熟记众数的定义是解决问题的关键.
3、D
【解析】
【分析】
根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.
【详解】
解:60出现了3次,出现的次数最多,
则众数是60元;
把这组数据从小到大排列为:25,25,30,30,60,60,60,65,
则中位数是=45(元).
故选:D.
【点睛】
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),熟记定义是解题关键.
4、B
【解析】
【分析】
先将数据按从小到大排列,取中间位置的数,即为中位数.
【详解】
解:将改组数据从小到大排列得:2,5,5,5,8,8,9,
中间位置的数为:5,所以中位数为5.
故选:B.
【点睛】
本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键.
5、C
【解析】
【分析】
鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.
【详解】
解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.
故选:C.
【点睛】
本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.
6、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
7、A
【解析】
【分析】
根据众数、中位数的定义解答.
【详解】
解:读书册数的众数是3;第10个数据是3,第11个数据是3,故中位数是3,
故选:A.
【点睛】
此题考查了统计中的众数和中位数的定义,数据定义并应用是解题的关键.
8、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、A
【解析】
【分析】
可以设得总人数为x人,然后求得总钱数,再求平均数即可;在此题中购13元价格的饭菜的人最多,所以众数为13元.
【详解】
解:设本校共有师生x人,则买饭菜的费用是①12元:25%x×12=3x
②13元:55%x×13=7.15x,
③14元:20%x×14=2.8x
该校师生购买饭菜费用的平均数是(3x+7.15x+2.8x)÷x=12.95元.
购13元饭菜的人最多,所以众数为13元.
故选:A.
【点睛】
此题考查了众数与平均数的知识,属于简单题目.一组数据中出现次数最多的数据叫做众数.把所有数据相加后再除以数据的个数即得平均数.
10、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
二、填空题
1、300名学生的体重
【解析】
【分析】
根据样本就是从总体中抽取出一部分个体即可得出答案.
【详解】
解:某校有3000名学生,随机抽取了300名学生进行体重调查,该问题中,300名学生的体重是调查的样本.
故答案为:300名学生的体重.
【点睛】
本题考查样本的定义,即从总体中抽取的一部分个叫做总体的一个样本,用样本的特征去估计总体的特征,是常用的统计思想方法.
2、乙
【解析】
【分析】
分别求出两人的成绩的加权平均数,即可求解.
【详解】
解:甲候选人的最终成绩为: ,
乙候选人的最终成绩为: ,
∵ ,
∴乙将被录取.
故答案为:乙
【点睛】
本题主要考查了求加权平均数,熟练掌握加权平均数的求法是解题的关键.
3、25
【解析】
【分析】
根据众数的定义分析即可,众数:在一组数据中出现次数最多的数.
【详解】
解:数据25,23,25,27,30,25的众数是25
故答案为:25
【点睛】
本题考查了众数的定义,理解众数的定义是解题的关键.
4、11
【解析】
【分析】
根据加权平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量.
【详解】
解:售价应定为每千克(元.
故答案为:11.
【点睛】
本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求10、11、14这三个数的平均数.
5、88
【解析】
【分析】
把每个分数与其权重相乘再相加即可得到加权平均数.
【详解】
解:根据题意得:
90×80%+80×20%=88(分),
答:A同学的平均分是88分.
故答案为:88.
【点睛】
本题考查加权平均数的求法,掌握计算方法是本题关键.
三、解答题
1、(1)见解析;(2);(3)小时
【解析】
【分析】
(1)根据每天完成作业所用的平均时间为1小时的占30%,共30人,即可求得总人数;根据总数减去其他三项即可求得每天完成作业所用的平均时间为1.5小时的人数进而补充条形统计图;
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多;
(3)根据求平均数的方法,求得100个完成作业所用时间的平均数
【详解】
(1)总人数为:(人);
每天完成作业所用的平均时间为1.5小时的人数为:(人)
补充条形统计图如下:
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多,故学生每天完成作业所用的平均时间的众数为1.5,
(3)被抽查学生完成作业所用的平均时间为小时
【点睛】
本题考查了条形统计图与扇形统计图信息关联,求众数、平均数,从统计图中获取信息是解题的关键.
2、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高
【解析】
【分析】
(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;
(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;
(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.
【详解】
解:(1)第二组的频率是=0.15
总篇数是18÷0.15=120(篇),
则本次活动共有120篇论文参加评比.
(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,
则计算可知第四组上交的论文数量最多,有36篇.
(3)第六组的论文的频数=120×0.05=6篇;
第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;
56%
相关试卷
这是一份数学七年级下册第九章 数据的收集与表示综合与测试课后练习题,共20页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份初中第九章 数据的收集与表示综合与测试课时训练,共18页。
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了下列问题不适合用全面调查的是,已知一组数据等内容,欢迎下载使用。
