


北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题
展开
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试同步达标检测题,共18页。试卷主要包含了下列问题不适合用全面调查的是,已知一组数据等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列采用的调查方式中,不合适的是
A.了解一批灯泡的使用寿命,采用普查
B.了解神舟十二号零部件的质量情况,采用普查
C.了解单县中学生睡眠时间,采用抽样调查
D.了解中央电视台《开学第一课》的收视率,采用抽样调查
2、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
3、抽样调查了某校30位女生所穿鞋子的尺码,数据如下(单位:码):
则鞋厂最感兴趣的是这组数据的( )
A.平均数B.中位数C.众数D.方差
4、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间D.调查市场上某种食品的色素含量是否符合国家标准
5、已知一组数据:66,66,62,68,63,这组数据的平均数和中位数分别是( )
A.66,62B.65,66C.65,62D.66,66
6、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为( )
A.86分B.87分C.88分D.89分
7、某校人工智能科普社团有12名成员,成员的年龄情况统计如下:
则这12名成员的平均年龄是( )
A.13岁B.14岁C.15岁D.16岁
8、空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( )
A.扇形统计图
B.条形统计图
C.折线统计图
D.频数直方图
9、为庆祝中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如表,其中有两个数据被遮盖.
下列关于成的统计量中、与被遮盖的数据无关的是( )
A.平均数B.中位数
C.中位数、众数D.平均数、众数
10、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率D.调查某班学生的身高情况
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹克销售量如表:
如果每件夹克的利润相同,你认为该店主最关注销售数据的统计量是____.(填写“平均数”或“中位数”或“众数”)
2、为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计, 绘制了一个不完整的扇形统计图,根据图中提供的信息,阅读3小时对应扇形图的圆心角的大小为_________度.
3、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.
4、某项比赛对专业和才艺两方面评分的权重分别设为80%和20%.A同学专业得分为90分,才艺得分为80分,A同学的平均分是 _____分.
5、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_____
三、解答题(5小题,每小题10分,共计50分)
1、某学校考察各个班级的教室卫生情况时包括以下几项:黑板、门窗、桌椅、地面.一天,三个班级的各项卫生成绩(单位:分)分别如下:
(1)小明将黑板、门窗、桌椅、地面这四项得分依次按15%,10%,35%,40%的比例计算各班的卫生成绩,那么哪个班的成绩最高?
(2)你认为上述四项中,哪一项更为重要?请你按自己的想法设计一个评分方案,根据你的评分方案,哪一个班的卫生成绩最高?
2、光明中学八年级(1)班在一次测试中,某题(满分为5分)的得分情况如图,计算这题得分的众数、中位数和平均数.
3、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)
(1)求这10名男同学的达标率是多少?
(2)这10名男同学的平均成绩是多少?
(3)最快的比最慢的快了多少秒?
4、两个人群A,B的年龄(单位;岁)如下:
A:13,13,14,15,15,15,15,16,17,17;
B:3,4,4,5,5,6,6,6,54,57.
(1)人群A年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
(2)人群B年龄的平均数、中位数和众数分别是多少?你认为用哪个数据可以较好地描述该人群年龄的集中趋势?
5、某公司销售部有营销人员15人,销售部为了确定某种商品的月销售定额,统计了这15人某月的销售量,如下表所示:
(1)求这15位销售人员该月销售量的平均数、中位数、众数;
(2)假设销售部经理把每位营销员的月销售额定为320件,你认为是否合理?为什么?
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:A、了解一批灯泡的使用寿命,采用抽样调查,本选项说法不合适,符合题意;
、了解神舟十二号零部件的质量情况,采用普查,本选项说法合适,不符合题意;
、了解单县中学生睡眠时间,采用抽样调查,本选项说法合适,不符合题意;
、了解中央电视台《开学第一课》的收视率,采用抽样调查,本选项说法合适,不符合题意;
故选:A.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
3、C
【解析】
【分析】
鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.
【详解】
解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.
故选:C.
【点睛】
本题考查学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用.
4、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
5、B
【解析】
【分析】
根据平均数的计算公式(,其中是平均数,是这组数据,是数据的个数)和中位数的定义(将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数)即可得.
【详解】
解:这组数据的平均数是,
将这组数据按从小到大进行排序为,
则这组数据的中位数是66,
故选:B.
【点睛】
本题考查了平均数和中位数,熟记公式和定义是解题关键.
6、B
【解析】
【分析】
根据加权平均数的公式计算即可.
【详解】
解:小明该学期的总评得分=分.
故选项B.
【点睛】
本题考查加权平均数,掌握加权平均数公式是解题关键.
7、B
【解析】
【分析】
根据平均数公式计算.
【详解】
解: (岁),
故选:B.
【点睛】
此题考查平均数的计算公式,熟记计算公式是解题的关键.
8、A
【解析】
【分析】
根据扇形统计图、折线统计图、条形统计图、频数直方图各自的特点选择即可.
【详解】
解:根据题意,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:A.
【点睛】
此题考查扇形统计图、折线统计图、条形统计图各自的特点.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.
9、C
【解析】
【分析】
通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.
【详解】
解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),
成绩为100分的,出现次数最多,因此成绩的众数是100,
成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,
因此中位数和众数与被遮盖的数据无关,
故选:C.
【点睛】
本题主要考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.
10、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
二、填空题
1、众数
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量;销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,故影响该店主决策、引起店主最关注的统计量是众数.
故答案为:众数.
【点睛】
此题主要考查众数的应用,一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
2、144
【解析】
【分析】
首先计算出阅读3小时所占圆心角的度数,再乘以360°即可得出结论.
【详解】
解:阅读3小时所占圆心角的度数为1-16%-10%-10%-24%=40%,
360°×40%=144°,
故答案为:144.
【点睛】
本题考查了扇形统计图,正确的识别图形是解题的关键.
3、 15
【解析】
【分析】
根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.
【详解】
解:这些队员年龄的平均数=
这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,
∴中位数为15
【点睛】
本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.
4、88
【解析】
【分析】
把每个分数与其权重相乘再相加即可得到加权平均数.
【详解】
解:根据题意得:
90×80%+80×20%=88(分),
答:A同学的平均分是88分.
故答案为:88.
【点睛】
本题考查加权平均数的求法,掌握计算方法是本题关键.
5、a>1.5b
【解析】
【分析】
先表示甲乙的加权平均分,再根据甲被录取列不等式即可.
【详解】
甲的加权平均分为:90a+80b
乙的加权平均分为:84a+89b
∵甲被录取
∴甲的分数>乙的分数
∴90a+80b>84a+89b,
解得a>1.5b,
故答案为:a>1.5b.
【点睛】
本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答.
三、解答题
1、(1)一班88.75分,二班88.75分,三班91分;三班成绩最高;(2)见详解.
【解析】
【分析】
(1)根据黑板、门窗、桌椅、地面的权重为15%、10%、35%、40%的比例计算各班的卫生成绩;
(2)本问为开放题,答案不唯一,只要符合题意即可.
【详解】
解:(1)一班的成绩=95×15%+90×10%+90×35%+85×40%=88.75分;
二班的成绩=90×15%+95×10%+85×35%+90×40%=88.75分;
三班的成绩=85×15%+90×10%+95×35%+90×40%=91分;
∴三班的成绩最高.
(2)若将黑板、门窗、桌椅、地面按10%,35%,15%,40%的比例计算各班卫生成绩:
∵一班的加权平均成绩=,
二班的加权平均成绩=,
三班的加权平均成绩=,
∵;
∴二班的卫生成绩最高.
【点睛】
本题是开放题,答案不唯一,考查了加权平均数的计算.
2、众数为3分、中位数为3分、平均数为2.86分
【解析】
【分析】
根据中位线和众数的定义、加权平均数的定义进行计算.
【详解】
解:由于得分最多的是3分,占总数的40%,因此众数是3,
因为6%+8%+16%=30%50%,
所以得分位于中间的数是3分,即中位数是3,
全班同学在该题的平均分为:(分).
【点睛】
本题考查扇形统计图、众数、中位数、加权平均数等知识,是重要考点,解题的关键是明确扇形统计图中百分比的含义.
3、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒
【解析】
【分析】
(1)求这10名男同学的达标人数除以总人数即可求解;
(2)根据10名男同学的成绩即可求出平均数;
(3)分别求出最快与最慢的时间,故可求解.
【详解】
解(1)从记录数据可知达标人数是7
∴ 达标率=7÷10×100%=70%
(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)
∴这10名男同学的平均成绩是15.1秒
(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)
17-13.6=3.4(秒)
∴最快的比最慢的快了3.4秒.
【点睛】
此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.
4、(1)人群A年龄的平均数、中位数、众数分别是:15岁、15岁、15岁;平均数、中位数或众数都能较好反映该人群年龄的集中趋势;(2)人群B年龄的平均数、中位数、众数分别是:15岁、5.5岁、6岁;相对而言,中位数或众数可以较好地描述该人群年龄的集中趋势.
【解析】
【分析】
(1)根据平均数、中位数和众数的定义,并且结合题意求解;
(2)根据平均数、中位数和众数的定义,并且结合题意求解.
【详解】
解:(1)人群A年龄的平均数是:(13×2+14+15×4+16+17×2)÷10=15(岁),
这10个数按从小到大的顺序排列为:13,13,14,15,15,15,15,16,17,17,中位数是:(15+15)÷2=15(岁),
15出现了4次,次数最多,所以众数是15岁;
用平均数、中位数或者众数都可以较好地描述该人群年龄的集中趋势;
(2)人群B年龄的平均数是:(3+4×2+5×2+6×3+54+57)÷10=15(岁),
这10个数按从小到大的顺序排列为:3,4,4,5,5,6,6,6,54,57,中位数是:(5+6)÷2=5.5(岁),
6出现了3次,次数最多,所以众数是6岁;
平均数受极端值的影响较大,用中位数或者众数可以较好地描述该人群年龄的集中趋势.
【点睛】
本题考查平均数、众数与中位数的意义,平均数是所有数据的和除以数据总数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是指一组数据中出现次数最多的数据.
5、(1)平均数、中位数和众数依次为:320件、210件、210件;(2)不合理,见解析
【解析】
【分析】
(1)根据平均数、中位数和众数的定义求解;
(2)先观察出能销售320件的人数是否能达到大多数人的水平,再判断是否合理.
【详解】
解:(1)平均数,
按大小数序排列这组数据,第7个数为210,则中位数为210;
210出现的次数最多,则众数为210;
故答案为320,210,210;
(2)不合理;理由如下:
因为销售210件的人数有5人,能代表大多数人的销售水平,
所以销售部经理把每位销售人员的月销售量定为210件合理,
而15位营销人员中只有2人的销售量达到320件,因此,一般可以认为“把每位营销人员的月销售额定为320件”的做法不合理..
【点睛】
本题考查众数与中位数的意义、平均数,解题的关键是掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
码号
33
34
35
36
37
人数
7
6
15
1
1
姓名
平时
期中
期末
总评
小明
90
90
85
年龄(岁)
12
13
14
15
16
人数(人)
1
4
3
2
2
成绩/分
91
92
93
94
95
96
97
98
99
100
人数
■
■
1
2
3
5
6
8
10
12
尺码
39
40
41
42
43
平均每天销售量/件
10
12
20
12
12
黑板
门窗
桌椅
地面
一班
95
90
90
85
二班
90
95
85
90
三班
85
90
95
90
每人销售量/件数
1800
510
250
210
150
120
人数
1
1
3
5
3
2
相关试卷
这是一份北京课改版七年级下册第九章 数据的收集与表示综合与测试课后练习题,共18页。试卷主要包含了某中学七等内容,欢迎下载使用。
这是一份初中数学第九章 数据的收集与表示综合与测试课时练习,共18页。
这是一份数学七年级下册第九章 数据的收集与表示综合与测试随堂练习题,共19页。试卷主要包含了下列调查中,适合采用全面调查等内容,欢迎下载使用。
