初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了已知,则的余角的补角是,如图,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,下列给定的条件中,不能判定的是( )A. B. C. D.2、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )A.138° B.128° C.52° D.152°3、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤4、已知,则的余角的补角是( )A. B. C. D.5、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )A.164°12' B.136°12' C.143°88' D.143°48'6、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )A.55° B.125° C.65° D.135°7、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )
A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°8、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行9、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个10、若的余角为,则的补角为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若α=25°57′,则2α的余角等于_____.2、如图所示,过点P画直线a的平行线b的作法的依据是___________.3、已知∠A的补角是142°,则∠A的余角的度数是___________.4、若一个角的补角与这个角的余角之和为190°,则这个角的度数为_____度.5、如图,O是直线AB上一点,已知∠1=36°,OD平分∠BOC,则∠AOD=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴.2、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.3、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数4、已知:如图,直线相交于点,平分,若,求的度数.5、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD( )∵MN∥AB,∴∠A=( )( )∵MN∥CD,∴∠D= ( )∴∠AGD=∠AGM+∠DGM=∠A+∠D.【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数. ---------参考答案-----------一、单选题1、A【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.2、B【分析】根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.【详解】解:如图.∵l1//l2,∴∠1=∠3=52°.∵∠2与∠3是邻补角,∴∠2=180°﹣∠3=180°﹣52°=128°.故选:B.【点睛】本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.3、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4、A【分析】根据余角和补角定义解答.【详解】解:的余角的补角是,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.5、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.6、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EO⊥AB,∠EOC=35°,,.故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.7、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, ,
∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.8、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.9、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.10、C【分析】根据余角和补角的定义,先求出,再求出它的补角即可.【详解】解:∵的余角为,∴,的补角为,故选:C.【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.二、填空题1、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.2、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,,(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.3、52°度【分析】两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.【详解】解:∵∠A的补角为142°,∴∠A=180°-142°=38°,∴∠A的余角为90°-∠A=90°-38°=52°.故答案为:52°.【点睛】本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.4、40【分析】首先设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:这个角的补角的度数+它的余角的度数=190,根据等量关系列出方程,再解即可.【详解】解:设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:
(180-x)+(90-x)=190,
解得:x=40,
故答案为: 40.【点睛】本题考查余角和补角,关键是掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.5、108°【分析】首先根据邻补角的定义得到∠BOC,然后由角平分线的定义求得∠COD即可.【详解】解:∵∠1=36°,∴∠COB=180°-36°=144°,∵OD平分∠BOC,∴∠COD=∠BOC=×144°=72°,∴∠AOD=∠1+∠COD=36°+72°=108°.故答案为:108°.【点睛】本题主要考查角平分线及邻补角,角的和差,熟练掌握邻补角及角平分线的定义是解题的关键.三、解答题1、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【解析】【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.2、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【解析】【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC平分∠BOE,∴∠COE=∠BOC,∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD;∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF;(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC,∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COE,∵OF⊥OC,∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF.【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.3、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.4、【解析】【分析】先根据平角的定义和可得,再根据角平分线的定义可得,然后根据对顶角相等即可得.【详解】解:,,平分,,由对顶角相等得:.【点睛】本题考查了对顶角相等、角平分线的定义等知识点,熟练掌握角平分线的定义是解题关键.5、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD(平行于同一条直线的两条直线平行),∵MN∥AB,∴∠A=∠AGM(两直线平行,内错角相等),∵MN∥CD,∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D.故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD,∵MN∥AB,∴∠A=∠AGM,∵MN∥CD,∴∠D=∠DGM,∴∠AGD=∠AGM-∠DGM=∠A-∠D. 应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,又∵AB∥CD,∴MN∥CD,PQ∥CD∵MN∥AB,PQ∥AB,∴∠BAG=∠AGM,∠BAH=∠AHP,∵MN∥CD,PQ∥CD,∴∠CDG=∠DGM,∠CDH=∠DHP,∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,∵AH平分∠BAG,∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°. 【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共21页。试卷主要包含了如图,下列命题中,为真命题的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试达标测试,共23页。试卷主要包含了直线,下列命题等内容,欢迎下载使用。
这是一份七年级下册第七章 观察、猜想与证明综合与测试课时训练,共27页。试卷主要包含了下列命题中,真命题是,下列语句中,错误的个数是,下列命题中,是真命题的是,下列说法正确的个数是等内容,欢迎下载使用。