![考点解析:京改版七年级数学下册第七章观察、猜想与证明定向测评试题(含详解)第1页](http://m.enxinlong.com/img-preview/2/3/12696573/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点解析:京改版七年级数学下册第七章观察、猜想与证明定向测评试题(含详解)第2页](http://m.enxinlong.com/img-preview/2/3/12696573/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![考点解析:京改版七年级数学下册第七章观察、猜想与证明定向测评试题(含详解)第3页](http://m.enxinlong.com/img-preview/2/3/12696573/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共24页。试卷主要包含了已知,则的余角的补角是,下列命题是真命题的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°2、如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中至少有2对互补的角;③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )A.1个 B.2个 C.3个 D.4个3、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).A. B.C. D.4、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )A.95° B.105° C.115° D.125°5、若∠α=73°30',则∠α的补角的度数是( )A.16°30' B.17°30' C.106°30' D.107°30'6、已知,则的余角的补角是( )A. B. C. D.7、下列命题是真命题的是( )A.等角的余角相等 B.同位角相等C.互补的角一定是邻补角 D.两个锐角的和是钝角8、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )A.152° B.28° C.52° D.90°9、如图,已知和都是直角,图中互补的角有( )对.A.1 B.2 C.3 D.010、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A.0个 B.1个 C.2个 D.3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,过点P画直线a的平行线b的作法的依据是___________.2、如图,将一块直角三角板与一张两边平行的纸条按照如图所示的方式放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2=∠3;④∠4+∠5=180°.其中正确的是________.(填序号)3、已知:如图,直线AB、CD被直线GH所截,,求证: ABCD.完成下面的证明:证明:∵AB被直线GH所截,∴_____∵∴______∴______________(________)(填推理的依据).4、如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC恰好平分∠EOB,则∠AOD=_____度. 5、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______. 三、解答题(5小题,每小题10分,共计50分)1、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.(1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .(2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.2、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.3、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.4、如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.5、如图①,直线AB与直线CD相交于点O,, 过点O作射线.(1)若射线OF平分, 求的度数;(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值. ---------参考答案-----------一、单选题1、D【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.2、B【分析】按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.【详解】解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确; ②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,∵BC=2,CD=DE=3,∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误. 故选B.【点睛】本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.3、C【分析】根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.【详解】解:A、+=180°−90°=90°,互余;B、+=60°+30°+45°=135°;C、根据同角的余角相等,可得=;D、+=180°,互补;故选:C.【点睛】本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.4、B【分析】由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.【详解】解:由题意得∠ADF=45°,∵,∠B=30°,∴∠B+∠BDF=180°,∴∠BDF=180°﹣∠B=150°,∴∠ADB=∠BDF﹣∠ADF=105°.故选:B【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.5、C【分析】根据补角的定义可知,用180°﹣73°30'即可,【详解】解:∠α的补角的度数是180°﹣73°30'=106°30′.故选:C.【点睛】本题考查角的度量及补角的定义,解题关键是掌握补角的定义.6、A【分析】根据余角和补角定义解答.【详解】解:的余角的补角是,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.7、A【分析】由同角或等角的余角相等可判断A,由平行线的性质可判断B,由邻补角的定义可判断C,通过举反例,比如 可判断D,从而可得答案.【详解】解:等角的余角相等,正确,是真命题,故A符合题意,两直线平行,同位角相等,所以同位角相等是假命题,故B不符合题意;互补的角不一定是邻补角,所以互补的角一定是邻补角是假命题,故C不符合题意;两个锐角的和不一定是钝角,所以两个锐角的和是钝角是假命题,故D不符合题意;故选:A【点睛】本题考查的是等角的余角相等,平行线的性质,邻补角的定义,锐角与钝角的含义,掌握判断命题真假的方法是解题的关键.8、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.9、B【分析】如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.【详解】解:如图,延长BO至点E.∵∠BOD=90°,∴∠DOE=180°−∠DOB=90°.∴∠DOE=∠DOB=∠AOC=90°.∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.∴∠AOE=∠COD,∠AOD=∠BOC.∵∠AOE+∠AOB=180°,∴∠COD+∠AOB=180°.综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.故选:B.【点睛】本题主要考查补角,熟练掌握补角的定义是解决本题的关键.10、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确; ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.二、填空题1、内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,,(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.2、①②④【分析】根据平行线的性质,直角三角板的性质对各小题进行验证即可得解.【详解】解:∵纸条的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,故①,②,④正确;∵三角板是直角三角板,∴∠2+∠4=180°-90°=90°,∵∠3=∠4,∴∠2+∠3=90°,故③不正确.综上所述,正确的是①②④.故答案为:①②④.【点睛】本题考查了平行线的性质,直角三角板的性质,熟记性质与概念并准确识图是解题的关键.3、3 180° AB CD 同旁内角互补,两直线平行 【分析】先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD.【详解】证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠3=112°∵∠2=68°,∴∠2+∠3=180°,∴AB∥CD,(同旁内角互补,两直线平行)故答案为∠3,180°,AB,CD,同旁内角互补,两直线平行.【点睛】本题主要考查了平行线的判定,两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.4、60【分析】根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°,求出∠BOC,再根据对顶角相等求出答案即可.【详解】解:∵OE是∠AOC的平分线,OC恰好平分∠EOB, ∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠BOC=60°,∴∠AOD=∠BOC=60°,故答案为:60.【点睛】本题考查了邻补角、对顶角,角平分线的性质知识点,做题的关键是掌握邻补角互补,角的平分线分成的两个角相等,对顶角相等.5、35°【分析】根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.【详解】解:∵OE⊥AB, ∴∠AOE=90°,∵ ,∴∠AOC=90°- ,∴∠BOD=∠AOC= ,故答案为:35°.【点睛】本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.三、解答题1、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析【解析】【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MR∥NP.如题图1∵AB∥CD,∴∠EMB=∠END,∵MR平分∠EMB,NP平分∠EBD,∴,∴∠EMR=∠ENP,∴MR∥BP;故答案为MR∥BP;(2)结论为:MR∥NP.如题图2,∵AB∥CD,∴∠AMN=∠END,∵MR平分∠AMN,NP平分∠EBD,∴∴∠RMN=∠ENP,∴MR∥NP;(3)结论为:MR⊥NP.如图,设MR,NP交于点Q,过点Q作QG∥AB,∵AB∥CD,∴∠BMN+∠END=180°,∵MR平分∠BMN,NP平分∠EBD,∴,∴∠BMR+∠NPD=,∵GQ∥AB,AB∥CD,∴GQ∥CD∥AB,∴∠BMQ=∠GQM,∠GQN=∠PND,∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,∴MR⊥NP,【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.2、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【解析】【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31. 【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.3、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.4、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析【解析】【分析】(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;(2)求出∠EOG=∠BOG即可.【详解】解:(1)∵OG⊥CD.∴∠GOC=∠GOD=90°,∵∠AOC=∠BOD=38°12′,∴∠BOG=90°﹣38°12′=51°48′,(2)OG是∠EOB的平分线,理由:∵OC是∠AOE的平分线,∴∠AOC=∠COE=∠DOF=∠BOD,∵∠COE+∠EOG=∠BOG+∠BOD=90°,∴∠EOG=∠BOG,即:OG平分∠BOE.【点睛】本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.5、(1);(2)平分,理由见解析;(3)秒或秒【解析】【分析】(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;(2)由得出,由角平分线的定义得出,得即可得出结论;(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.【详解】解:(1), , , (2) 平分,理由如下:, .OE平分, 即射线OC平分.(3)∵且,∴又∵,∴,∴①当s时直线绕点O按每秒5°的速度逆时针旋转解得②当s时直线绕点O按每秒5°的速度逆时针旋转此时无解③当s时直线绕点O按每秒5°的速度逆时针旋转解得35综上所述,当时, 秒或秒.【点睛】本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.
相关试卷
这是一份初中数学第七章 观察、猜想与证明综合与测试课后练习题,共20页。试卷主要包含了下列语句中,是命题的是,一个角的补角比这个角的余角大.,下列命题是假命题的有等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步测试题,共25页。试卷主要包含了如图,直线AB,若∠α=55°,则∠α的余角是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共22页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)