初中第七章 观察、猜想与证明综合与测试达标测试
展开
这是一份初中第七章 观察、猜想与证明综合与测试达标测试,共20页。试卷主要包含了下列说法中正确的个数是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题中,①在同一平面内,若,,则;②相等的角是对顶角;③能被整除的数也能被整除;④两点之间线段最短.真命题有( )A.个 B.个 C.个 D.个2、如图,能判定AB∥CD的条件是( )A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠23、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )A. B.C. D.4、如图,下列条件能判断直线l1//l2的有( )①;②;③;④;⑤A.1个 B.2个 C.3个 D.4个5、下列说法中正确的个数是( )(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1 B.2 C.3 D.46、一个角的余角比这个角的补角的一半小40°,则这个角为( )A.50° B.60° C.70° D.80°7、对于命题“如果,那么.”能说明它是假命题的反例是( )A. B.,C., D.,8、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )A.∠1 B. C.∠2 D.9、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°10、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.2、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB(_______),∴∠1=∠______(________),又∵∠1=∠2(________),∴∠2=∠______(________),∴AB______(________).3、如图,已知ABCD,,,则____.4、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.5、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.三、解答题(5小题,每小题10分,共计50分)1、完成下面的证明如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.求证:∠F=90°.证明:∵AGCD(已知)∴∠ABC=∠BCD(____)∵∠ABE=∠FCB(已知)∴∠ABC﹣∠ABE=∠BCD﹣∠FCB即∠EBC=∠FCD∵CF平分∠BCD(已知)∴∠BCF=∠FCD(____)∴____=∠BCF(等量代换)∴BECF(____)∴____=∠F(____)∵BE⊥AF(已知)∴____=90°(____)∴∠F=90°.2、如图,已知∠AOC=90°,∠BOD=90°,∠BOC=38°19′,求∠AOD的度数.3、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.4、如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,求∠DOE和∠BOD;(2)设∠COE=α,∠BOD=β,试探究α与β之间的数量关系.5、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数 ---------参考答案-----------一、单选题1、B【分析】根据对顶角的定义以及数的整除性和两点之间线段最短分析得出即可.【详解】解:①在同一平面内,若a⊥b,b⊥c,则a∥c,故为真命题;②相等的角不一定是对顶角,故为假命题;③能被2整除的数不一定能被4整除,故为假命题;④两点之间线段最短,故为真命题;故选B.【点睛】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.2、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.3、D【分析】由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.【详解】解:A.∵∠1+∠2度数不确定,
∴∠1与∠2不互为余角,故错误;
B.∵∠1+45°+∠2+45°=180°+180°=360°,
∴∠1+∠2=270°,
即∠1与∠2不互为余角,故错误;
C.∵∠1+∠2=180°,
∴∠1与∠2不互为余角,故错误;
D.∵∠1+∠2+90°=180°,
∴∠1+∠2=90°,
即∠1与∠2互为余角,故正确.
故选:D.【点睛】本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.4、D【分析】根据平行线的判定定理进行依次判断即可.【详解】①∵∠1,∠3互为内错角,∠1=∠3,∴; ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;③∠4,∠5互为同位角,∠4=∠5,∴; ④∠2,∠3没有位置关系,故不能证明 ,⑤,,∴∠1=∠3,∴,故选D.【点睛】此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.5、C【分析】根据平行线的性质分析判断即可;【详解】在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;综上所述,正确的是(1)(3)(4);故选C.【点睛】本题主要考查了平行线的性质,准确分析判断是解题的关键.6、D【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.【详解】设这个角为x,则它的余角为(90°-x),补角为(180°-x),依题意得解得x=80°故选D.【点睛】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.7、A【分析】根据假命题的概念、角的计算解答.【详解】解:当时,,但,命题“如果,那么”是假命题,故选:A.【点睛】本题考查的是命题的真假判断,解题的关键是掌握正确的命题叫真命题,错误的命题叫做假命题,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3,∴∠3=,∴∠2的余角为,故选B.【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.9、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.10、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.二、填空题1、【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,又∵∠1比∠2大4°,∴,∴,∴;故答案是.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.2、已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行 【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.3、95°【分析】过点E作EF∥AB,可得∠BEF+∠ABE=180°,从而得到∠BEF=60°,再由AB//CD,可得∠FEC=∠DCE,从而得到∠FEC=35°,即可求解.【详解】解:如图,过点E作EF∥AB,∵EF//AB,∴∠BEF+∠ABE=180°,∵∠ABE=120°,∴∠BEF=180°-∠ABE=180°-120°=60°,∵EF//AB,AB//CD,∴EF//CD,∴∠FEC=∠DCE,∵∠DCE=35°,∴∠FEC=35°,∴∠BEC=∠BEF+∠FEC=60°+35°=95°.故答案为:95°【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.4、130°【分析】根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.【详解】解:∵AB∥CD,∠EGB=50°,∴∠EHD=∠EGB=50°,∴∠CHG=180°﹣∠EHD=130°.故答案为:130°.【点睛】本题主要考查平行线的性质,邻补角,属于基础题.5、123°27′【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.【详解】解:∠1与∠2互余,且∠1=∠1=33°27′,则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′.故答案为:123°27′.【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.三、解答题1、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义【解析】【分析】根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.【详解】证明:∵AG∥CD(已知),∴∠ABC=∠BCD(两直线平行,内错角相等),∵∠ABE=∠FCB(已知),∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,即∠EBC=∠FCD,∵CF平分∠BCD(已知),∴∠BCF=∠FCD(角平分线的定义),∴∠EBC=∠BCF(等量代换),∴BE∥CF(内错角相等,两直线平行),∴∠BEF=∠F(两直线平行,内错角相等),∵BE⊥AF(已知),∴∠BEF=90°(垂直的定义),∴∠F=90°.故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.2、141°41′【解析】【分析】利用角的和差关系计算,先求得∠COD=51°41′,再由∠AOD=∠AOC+∠COD即可求解.【详解】解:∵∠BOD=90°,∠BOC=38°19′∴∠COD=∠BOD-∠BOC=51°41′∵∠AOC=90°∴∠AOD=∠AOC+∠COD=141°41′答:∠AOD的度数为141°41′.【点睛】本题主要考查了余角,正确得出∠COD的度数是解题关键.3、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.4、(1),;(2).【解析】【分析】(1)根据互余的性质求出,根据角平分线的性质求出,结合图形计算即可;(2)根据互余的性质用表示,根据角平分线的性质求出,结合图形列式计算即可.【详解】解:(1)∵与互余,,∴,∵OE平分,∴,∴,∴,;(2)∵,且与互余,∴,∵OE平分,∴,∴,解得:.【点睛】本题考查了余角及角平分线的性质,角的计算,理解两个性质并准确识图,理清图中各角度之间的关系是解题的关键.5、∠2=115°,∠3=65°,∠4=115°【解析】【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共26页。试卷主要包含了下列命题,直线,若的余角为,则的补角为,若∠α=55°,则∠α的余角是,如图等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共20页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列命题中,为真命题的是,下列命题中,是真命题的是等内容,欢迎下载使用。