初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题
展开
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共19页。试卷主要包含了命题,下列命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行2、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )A. B.C. D.3、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°4、如图,直线AB,CD相交于点O,AOC30,OE⊥AB,OF是AOD的角平分线.若射线OE,OF分C别以18/s,3/s的速度同时绕点O顺时针转动,当射线OE,OF重合时,至少需要的时间是( )A.8s B.11s C.s D.13s5、如所示各图中,∠1与∠2是对顶角的是( )A. B. C. D.6、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.0个 B.1个 C.2个 D.3个7、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )A.152° B.28° C.52° D.90°8、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°9、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A.1个 B.2个 C.3个 D.4个10、若的补角是150°,则的余角是( )A.30° B.60° C.120° D.150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若α=25°57′,则2α的余角等于_____.2、如图,OE是的平分线,交OA于点C,交OE于点D,,则的度数是______°.3、如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=____ °.
4、已知∠1与∠2互余,若∠1=33°27′,则∠2的补角的度数是___________.5、已知∠α的余角等于68°22',则∠α=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;(1)求∠DOE的度数;(2)求∠BOF的度数.2、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.3、如图,,OB是的角平分线.(1)当时,求的度数.(2)的余角是多少度?4、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.5、如图,已知,平分,平分,求证.证明:∵平分(已知),∴ ( ),同理 ,∴ ,又∵(已知)∴ ( ),∴. ---------参考答案-----------一、单选题1、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.2、D【分析】由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.【详解】解:A.∵∠1+∠2度数不确定,
∴∠1与∠2不互为余角,故错误;
B.∵∠1+45°+∠2+45°=180°+180°=360°,
∴∠1+∠2=270°,
即∠1与∠2不互为余角,故错误;
C.∵∠1+∠2=180°,
∴∠1与∠2不互为余角,故错误;
D.∵∠1+∠2+90°=180°,
∴∠1+∠2=90°,
即∠1与∠2互为余角,故正确.
故选:D.【点睛】本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.3、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.4、D【分析】设首次重合需要的时间为t秒,则OE比OF要多旋转120゜+75゜,由此可得方程,解方程即可.【详解】∵∠BOD=∠AOC=30゜,OE⊥AB∴∠EOD=∠EOB+∠BOD=90゜+30゜=120゜,∠AOD=180゜ - ∠AOC=150゜∵OF平分∠AOD∴∴∠EOD+∠DOF=120゜+75゜设OE、OF首次重合需要的时间为t秒,则由题意得:18t−3t=120+75解得:t=13即射线OE,OF重合时,至少需要的时间是13秒故选:D【点睛】本题考查了角平分线的性质,补角的含义,垂直的定义,角的和差运算,运用了方程思想来解决,本题的实质是行程问题中的追及问题.5、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.6、C【分析】利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.【详解】解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;故选:C.【点睛】本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.7、A【分析】根据两个角互为补角,它们的和为180°,即可解答.【详解】解:∵∠A与∠B互为补角,∴∠A+∠B=180°,∵∠A=28°,∴∠B=152°.故选:A【点睛】本题考查了补角,解决本题的关键是熟记补角的定义.8、A【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.9、C【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.10、B【分析】根据补角、余角的定义即可求解.【详解】∵的补角是150°∴=180°-150°=30°∴的余角是90°-30°=60°故选B.【点睛】此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角二、填空题1、38°6′【分析】根据余角的和等于90°列式计算即可求解.【详解】解:∵α=25°57′,∴2α=51°54′,∴2α的余角=90°﹣51°54′=38°6′.故答案为:38°6′.【点睛】此题主要考查角度的计算,解题的关键是熟知余角的性质.2、25【分析】先证明再证明从而可得答案.【详解】解: OE是的平分线, ∵, 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.3、110【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【详解】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点睛】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.4、123°27′【分析】本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.【详解】解:∠1与∠2互余,且∠1=∠1=33°27′,则∠2=90°-33°27′=56°33′,∠2的补角的度数为180°-56°33′=123°27′.故答案为:123°27′.【点睛】本题考查的是余角和补角的概念,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.5、【分析】根据余角的概念(如果两个角的和为,那么称这两个角“互为余角”)即可解答.【详解】解:由余角的定义得:,故答案为:.【点睛】本题考查余角的定义、角度的计算,熟记互为余角的两个角的和为90°是解答的关键.三、解答题1、(1)38°;(2)33°【解析】【分析】(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.【详解】解:(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°;(2)∵∠DOE=38°,∴∠COE=180°-∠DOE=142°,∵OF平分∠COE,∴∠EOF=∠COE=71°,∴∠BOF=∠EOF-∠BOE=33°.【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.2、∠EGF=120°.【解析】【分析】过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解【详解】解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:设,∵GB平分∠EGF,HF平分∠EHD,∴,∵AB//CD,∴FM∥AB∥CD,∴,∴,,即,,∵与互补,∴,∴,∴,∴.【点睛】本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.3、(1)的度数.(2)的余角是.【解析】【分析】(1)利用角平分线的性质,求得的度数,然后利用,即可求解的度数.(2)利用题(1)中的度数以及余角的概念,直接求解即可.【详解】(1)解: OB是的角平分线.,,,,.(2)解:由(1)得,故的余角.【点睛】本题主要是考查了角平分线以及余角的相关概念及性质和角的计算,熟练利用角平分线的性质求解角度,找到所要求的角与已知角的关系,是解决该题的关键.4、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.5、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【解析】【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=∠ABC(角平分线的定义),同理∠1=∠BCD,∴∠1+∠2=(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共21页。试卷主要包含了下列命题中是真命题的是,命题等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试随堂练习题,共21页。试卷主要包含了下列命题中,为真命题的是,下列说法正确的个数是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列命题中,为真命题的是,下列命题中,是真命题的是等内容,欢迎下载使用。