初中数学第七章 观察、猜想与证明综合与测试同步达标检测题
展开
这是一份初中数学第七章 观察、猜想与证明综合与测试同步达标检测题,共19页。试卷主要包含了以下命题是假命题的是,下列语句中,是命题的是,下列命题中,是真命题的是,若的补角是125°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣32、下列命题中,是真命题的是( )A.同位角相等 B.同旁内角相等,两直线平行C.平行于同一直线的两直线平行 D.相等的角是对顶角3、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°4、已知∠1与∠2互为补角,且∠1>∠2,则∠2的余角是( )A.∠1 B. C.∠2 D.5、以下命题是假命题的是( )A.的算术平方根是2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行6、下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤ B.①②④ C.①③④ D.②③④⑤7、下列各图中,∠1与∠2是对顶角的是( )A. B.C. D.8、下列命题中,是真命题的是( )A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直9、若的补角是125°,则的余角是( )A.90° B.54° C.36° D.35°10、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,,,,则∠CAD的度数为____________.2、已知与互为补角,且,则______.3、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
4、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.证明:∵(已知),∴(垂直的定义).∴________,∵(已知),∴________(依据1:________),∴(依据2:________).5、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.三、解答题(5小题,每小题10分,共计50分)1、已知如图,∠ABC=∠ADC,BF、DE分别是∠ABC、∠ADC的角平分线,∠1=∠2,那么CD与AB平行吗?写出推理过程.2、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC( ),∴∠B+∠DCB=180°( ).∵∠B=( )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=( )(垂直的定义).∴∠2=( ).∵AB∥DC(已知),∴∠1=( )( ).∵AC平分∠DAB(已知),∴∠DAB=2∠1=( )(角平分线的定义).∵AB∥DC(己知),∴( )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB= .3、一个角的余角的3倍比这个角的补角大18°,求这个角的度数.4、如图,直线、相交于点,是平分线,,求度数.5、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______. ---------参考答案-----------一、单选题1、D【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】解:当x=2,y=﹣3时,x2<y2,但x>y,故选:D.【点睛】此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.2、C【分析】根据平行线的性质和判定,对顶角的性质,逐项判断即可求解.【详解】解:A、两直线平行,同位角相等,则原命题是假命题,故本选项错误,不符合题意;B、同旁内角互补,两直线平行,则原命题是假命题,故本选项错误,不符合题意;C、平行于同一直线的两直线平行,则原命题是真命题,故本选项正确,符合题意;D、相等的角不一定是对顶角,则原命题是假命题,故本选项错误,不符合题意;故选:C【点睛】本题主要考查了真假命题的判断,平行线的性质和判定,对顶角的性质,熟练掌握平行线的性质和判定,对顶角的性质是解题的关键.3、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.4、B【分析】由已知可得∠2<90°,设∠2的余角是∠3,则∠3=90°﹣∠2,∠3=∠1﹣90°,可求∠3=,∠3即为所求.【详解】解:∵∠1与∠2互为补角,∴∠1+∠2=180°,∵∠1>∠2,∴∠2<90°,设∠2的余角是∠3,∴∠3=90°﹣∠2,∴∠3=∠1﹣90°,∴∠1﹣∠2=2∠3,∴∠3=,∴∠2的余角为,故选B.【点睛】本题主要考查了与余角补角相关的计算,解题的关键在于能够熟练掌握余角和补角的定义.5、A【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A、的算术平方根应该是, A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.6、A【分析】根据命题的定义分别进行判断即可.【详解】解:①若∠1=60°,∠2=60°,则∠1=∠2,是命题,符合题意;②同位角相等吗?是疑问句,不是命题,不符合题意;③画线段AB=CD,没有对事情作出判断,不是命题,不符合题意;④如果a>b,b>c,那么a>c,是命题,符合题意;⑤直角都相等,是命题,符合题意,命题有①④⑤.故选:A.【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B选项的是对顶角,其它都不是.故选:B.【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.8、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.9、D【分析】根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.【详解】∵的补角是125°,∴=180°-125°,∴的余角是90°-(180°-125°)=125°-90°=35°,故选D.【点睛】本题考查了补角,余角的计算,正确列出算式是解题的关键.10、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C.【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.二、填空题1、【分析】根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.【详解】解:∵∥,,∴,∴故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.2、【分析】根据题意可得,即可求解.【详解】解:∵与互为补角,∴ ,∵,∴.故答案为:【点睛】本题主要考查了补角的定义,熟练掌握互补的两角的和为 是解题的关键.3、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.4、 同角的余角相等 内错角相等,两直线平行 【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵(已知),∴(垂直的定义).∴,∵(已知),∴(同角的余角相等),∴(内错角相等,两直线平行).故答案为:;;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.5、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.三、解答题1、平行,见解析【解析】【分析】先由角平分线的定义得到∠3=∠ADC,∠2=∠ABC,再由∠ABC=∠ADC,得到∠3=∠2,即可推出∠3=∠1,再由内错角相等,两直线平行即可证明.【详解】解:CD∥AB.理由如下:∵BF、DE分别是∠ABC、∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC.∵∠ABC=∠ADC,∴∠3=∠2.又∵∠1=∠2,∴∠3=∠1.∴CD∥AB(内错角相等,两直线平行).【点睛】本题主要考查了角平分线的定义,平行线的判定,解题的关键在于能够熟练掌握角平分线的定义与平行线的判定条件.2、见解析.【解析】【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),∴(两直线平行,同旁内角互补).∵(已知),∴.∵(已知),∴(垂直的定义).∴.∵(已知),∴(两直线平行,内错角相等).∵平分(已知),∴(角平分线的定义).∵(己知),∴(两条直线平行,同旁内角互补).∴.【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.3、36°【解析】【分析】根据题意,先设这个角的度数为x°,则这个角的余角的度数为90°-x°,这个角的补角的度数为180°-x°,再列方程进行计算.【详解】解:设这个角的度数是x°. 由题意,得 . 解得,∴这个角的度数为36°.【点睛】本题主要考查了一元一次方程的实际应用,与余角补角有关的计算,掌握一元一次方程的解法是解题的关键.4、77°【解析】【分析】由题意根据平角的定义以及角平分线的性质可以求得∠AOE的度数.【详解】解:∵OE是∠AOD的平分线,∠AOC=26°,∴∠AOD=180°-∠AOC=154°,∴∠AOE=∠AOD=77°.【点睛】本题考查角平分线的定义,邻补角、对顶角,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想进行解答.5、(1)见解析;(2)34°【解析】【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试复习练习题,共25页。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共21页。试卷主要包含了下列说法正确的个数是,下列命题中是真命题的是等内容,欢迎下载使用。