终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年京改版七年级数学下册第七章观察、猜想与证明同步测评练习题(无超纲)

    立即下载
    加入资料篮
    2021-2022学年京改版七年级数学下册第七章观察、猜想与证明同步测评练习题(无超纲)第1页
    2021-2022学年京改版七年级数学下册第七章观察、猜想与证明同步测评练习题(无超纲)第2页
    2021-2022学年京改版七年级数学下册第七章观察、猜想与证明同步测评练习题(无超纲)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测

    展开

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共24页。试卷主要包含了下列命题中,是真命题的是,如图,直线AB,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
    京改版七年级数学下册第七章观察、猜想与证明同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是(  )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点2、一个角的补角比这个角的余角大(       ).A.70° B.80° C.90° D.100°3、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是(   ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.4、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是(  )A.128° B.142° C.38° D.152°5、下列命题中,是真命题的是(  A.同位角相等 B.同角的余角相等C.相等的角是对顶角 D.有且只有一条直线与已知直线垂直6、如图,直线ABCD相交于点OOE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为(  )A.72° B.98°C.100° D.108°7、如图,于点,则的度数是(   
    A.34° B.66° C.56° D.46°8、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮(  )A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°9、如图,若要使平行,则绕点至少旋转的度数是(    A. B. C. D.10、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )A.164°12' B.136°12' C.143°88' D.143°48'第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,,点BOD在同一直线上,若,则的度数为______.2、若互余,且,则______.3、如图,已知直线ABCD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.4、一个角的度数是42°36′,则它的余角的度数为_____°.(结果用度表示)5、已知∠A的补角是142°,则∠A的余角的度数是___________.三、解答题(5小题,每小题10分,共计50分)1、已知ABCD,点EAB上,点FDC上,点G为射线EF上一点.【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB又∵AB∥CDMN∥CD(        )MN∥AB∴∠A=(        )(        )MN∥CD∴∠D      (        )∴∠AGD=∠AGM+∠DGM=∠A+∠D【类比探究】如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.【应用拓展】如图3,AH平分∠GABDHAH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.2、直线AB//CD,直线EF分别交AB、CD于点MNNP平分∠MND(1)如图1,若MR平分∠EMB,则MRNP的位置关系是      (2)如图2,若MR平分∠AMN,则MRNP有怎样的位置关系?请说明理由.(3)如图3,若MR平分∠BMN,则MRNP有怎样的位置关系?请说明理由.3、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:ABCD证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)ADBC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3ABCD(_______)4、如图,∠AGB=∠EHF,∠C=∠D(1)求证:BDCE(2)求证:∠A=∠F5、小明同学遇到这样一个问题:如图,已知:ABCDEABCD之间一点,连接BEED,得到∠BED求证:∠BED=∠B+D小亮帮助小明给出了该问的证明.证明:过点EEFAB则有∠BEF=∠BABCDEFCD∴∠FED=∠D∴∠BED=∠BEF+FED=∠B+D请你参考小亮的思考问题的方法,解决问题:1)直线l1l2,直线EF和直线l1l2分别交于CD两点,点AB分别在直线l1l2上,猜想:如图,若点P在线段CD上,∠PAC15°,∠PBD40°,求∠APB的度数.2)拓展:如图,若点P在直线EF上,连接PAPBBDAC),直接写出∠PAC、∠APB、∠PBD之间的数量关系. ---------参考答案-----------一、单选题1、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.2、C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x,即可求出答案.【详解】解:设这个角为x,则这个角的补角为180°-x,这个角的补角为90°-x根据题意得:180°-x-(90°-x)=90°,故选:C.【点睛】本题主要考查了余角和补角的概念与性质.互为余角的两角的和为90°,互为补角的两角之和为180°.3、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A故选:A【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.4、B【分析】首先根据题意求出,然后根据求解即可.【详解】解:∵∠AOC和∠BOD都是直角,∠DOC=38°,故选:B.【点睛】此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.5、B【分析】利用平行线的性质、对顶角的性质、垂线的定义及互余的定义分别对每个选项进行判断后即可确定正确的选项.【详解】解:A、应该是两直线平行,同位角相等,则原命题是假命题,故本选项不符合题意;B、同角的余角相等,是真命题,故本选项符合题意;C、相等的角不一定是对顶角,则原命题是假命题,故本选项不符合题意; D、应该是在同一平面内,过一点有且只有一条直线与已知直线垂直,则原命题是假命题,故本选项不符合题意;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质、垂线的定义及互补的定义等知识.6、D【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.【详解】解:设∠BODx∵∠BOD:∠BOE=1:2,∴∠BOE=2xOE平分∠BOC∴∠COE=∠BOE=2xx+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠AOC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.7、C【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.8、D【分析】根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.【详解】解:根据题意得:∠AON=40°,∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,∴∠BON=∠AON=40°,∴轮船B在货轮的北偏西40°方向.故选:D【点睛】本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.9、A【分析】根据“两直线平行,内错角相等”进行计算.【详解】解:如图,l1l2∴∠AOB=∠OBC=42°,∴80°-42°=38°,l1绕点O至少旋转38度才能与l2平行.故选:A.【点睛】考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.10、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.二、填空题1、116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.【详解】解:∵,∠AOC=90°,∴∠BOC=64°,∵∠2+∠BOC=180°,∴∠2=116°.故答案为:116°.【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.2、69°【分析】由题意可设∠α=2x,∠β=3x,根据互余可得关于x的方程,解方程即可求出x,然后代值计算即可;【详解】解:因为所以设∠α=2x,∠β=3x因为互余,所以2x+3x=90°,解得x=18°,所以∠α=36°,∠β=54°,所以故答案为69°.【点睛】本题考查了互余的概念和简单的一元一次方程的应用,属于基本题目,熟练掌握基本知识,掌握求解的方法是关键.3、18°度【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,OF平分∠AOE∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4、47.4【分析】根据余角的定义即可得到结论.【详解】解:这个角的余角=90°-42°36′=47°24′=47.4°,故答案为:47.4.【点睛】本题考查了余角和补角,熟记余角的定义及度分秒的换算是解题的关键.5、52°度【分析】两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.【详解】解:∵∠A的补角为142°,∴∠A=180°-142°=38°,∴∠A的余角为90°-∠A=90°-38°=52°.故答案为:52°.【点睛】本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.三、解答题1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【解析】【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB,由MN∥ABPQAB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CDPQCD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.【详解】解:基础问题:过点G作直线MNAB又∵AB∥CDMN∥CD(平行于同一条直线的两条直线平行),MN∥AB∴∠A=∠AGM(两直线平行,内错角相等),MN∥CD∴∠D=∠DGM(两直线平行,内错角相等),∴∠AGD=∠AGM+∠DGM=∠A+∠D故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:如图所示,过点G作直线MNAB又∵AB∥CDMN∥CDMN∥AB∴∠A=∠AGMMN∥CD∴∠D=∠DGM∴∠AGD=∠AGM-∠DGM=∠A-∠D 应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQAB又∵AB∥CDMN∥CDPQCDMN∥ABPQAB∴∠BAG=∠AGM,∠BAH=∠AHPMN∥CDPQCD∴∠CDG=∠DGM,∠CDH=∠DHP∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,∴∠GDH=44°,∠DHP=22°,∴∠CDG=66°,∠AHP=54°,∴∠DGM=66°,∠BAH=54°,AH平分∠BAG∴∠BAG=2∠BAH=108°,∴∠AGM=108°,∴∠AGD=∠AGM-∠DGM=42°. 【点睛】本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.2、(1)MR//NP;(2)MR//NP,理由见解析;(3)MRNP,理由见解析【解析】【分析】(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMBNP平分∠EBD,得出,可证∠EMR=∠ENP即可;(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMNNP平分∠EBD,可得,得出∠RMN=∠ENP即可;(3设MRNP交于点Q,过点QQG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMNNP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥ABAB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.【详解】证明:(1)结论为MRNP.如题图1∵AB∥CD∴∠EMB=∠ENDMR平分∠EMBNP平分∠EBD∴∠EMR=∠ENPMR∥BP故答案为MR∥BP(2)结论为:MR∥NP.如题图2,∵AB∥CD∴∠AMN=∠ENDMR平分∠AMNNP平分∠EBD∴∠RMN=∠ENPMR∥NP(3)结论为:MRNP如图,设MRNP交于点Q,过点QQG∥ABAB∥CD∴∠BMN+∠END=180°,MR平分∠BMNNP平分∠EBD∴∠BMR+∠NPD=GQ∥ABAB∥CDGQ∥CD∥AB∴∠BMQ=∠GQM,∠GQN=∠PND∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,MRNP【点睛】本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.3、见解析【解析】【分析】由已知CE平分∠BCD可得∠1= 4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出ADBC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD    已知    ),∴∠1= ∠4 角平分线定义   ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),ADBC内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知, ∠D =∠3,ABCD内错角相等,两直线平行).故答案为:已知;4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.4、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BDCE(2)由BDCE,可得∠D=∠2,则∠2=∠C,推出ACDF,则∠A=∠F【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF∴∠1=∠EHFBDCE(2)∵BDCE∴∠D=∠2,∵∠D=∠C∴∠2=∠CACDF∴∠A=∠F【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.5、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当PDC延长线上时,∠APB=∠PBD-∠PAC;当PCD延长线上时,∠APB=∠PAC-∠PBD【解析】【分析】(1)过点PPG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;(2)分当P在线段CD上时;当PDC延长线上时;当PCD延长线上时,三种情况讨论求解即可.【详解】解:(1)如图所示,过点PPG∥l1∴∠APG=∠PAC=15°,l1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠APG+∠BPG=55°;(2)由(1)可得当P在线段CD上时,∠APB=∠PAC       +∠PBD如图1所示,当PDC延长线上时,过点PPG∥l1∴∠APG=∠PACl1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠BPG-∠APG=∠PBD-∠PAC如图2所示,当PCD延长线上时,过点PPGl1∴∠APG=∠PACl1∥l2PG∥l2∴∠BPG=∠PBD=40°,∴∠APB=∠APG-∠BPG=∠PAC-∠PBD∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当PDC延长线上时,∠APB=∠PBD-∠PAC;当PCD延长线上时,∠APB=∠PAC-∠PBD【点睛】本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质. 

    相关试卷

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共24页。试卷主要包含了若的余角为,则的补角为等内容,欢迎下载使用。

    北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题:

    这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共22页。试卷主要包含了下列说法正确的个数是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。

    数学七年级下册第七章 观察、猜想与证明综合与测试同步训练题:

    这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共18页。试卷主要包含了若的余角为,则的补角为,下列说法中,假命题的个数为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map