北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练
展开
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试精练,共21页。试卷主要包含了如图,直线AB∥CD,直线AB,若的余角为,则的补角为,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个角的补角是这个角的4倍,那么这个角为( )A.36° B.30° C.144° D.150°2、如图,木工用图中的角尺画平行线的依据是( )A.垂直于同一条直线的两条直线平行B.平行于同一条直线的两条直线平行C.同位角相等,两直线平行D.经过直线外一点,有且只有一条直线与这条直线平行3、下列命题中,真命题是( )A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补4、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°5、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )A.62° B.58° C.52° D.48°6、如图,下列给定的条件中,不能判定的是( )A. B. C. D.7、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°8、若的余角为,则的补角为( )A. B. C. D.9、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°10、已知,则的余角的补角是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一个角的补角与这个角的余角之和为190°,则这个角的度数为_____度.2、已知∠A的补角是142°,则∠A的余角的度数是___________.3、75°的余角是______.4、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.5、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.三、解答题(5小题,每小题10分,共计50分)1、已知如图,AO⊥BC,DO⊥OE.(1)不添加其它条件情况下,请尽可能多地写出图中有关角的等量关系(至少3个);(2)如果∠COE=35°,求∠AOD的度数.2、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.证明:过点E作直线EF∥CD,∠2=______,( )AB∥CD(已知),EF∥CD_____∥EF,( )∠B=∠1,( )∠1+∠2=∠BED,∠B+∠D=∠BED,( )方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.3、如图所示,AB//CD,点E为两条平行线外部一点,F为两条平行线内部一点,G、H分别为AB、CD上两点,GB平分∠EGF,HF平分∠EHD,且2∠F与∠E互补,求∠EGF的大小.4、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.5、如图,已知点,,三点共线,.作,平分.(1)当时,①补全图形;②求的度数;(2)请用等式表示与之间的数量关系,并呈现你的运算过程. ---------参考答案-----------一、单选题1、A【分析】设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.【详解】解:设这个角为 ,则它的补角为 ,根据题意得: ,解得: .故选:A【点睛】本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.2、C【分析】由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.【详解】由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.故选:C【点睛】本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.3、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、错误,当被截的直线平行时形成的同位角才相等;B、错误,对顶角相等但相等的角不一定是对顶角;C、正确,必须强调在同一平面内;D、错误,两直线平行同旁内角才互补.故选:C.【点睛】主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.5、A【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,∴,∴,故选:A.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.6、A【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.7、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.8、C【分析】根据余角和补角的定义,先求出,再求出它的补角即可.【详解】解:∵的余角为,∴,的补角为,故选:C.【点睛】本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.9、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.10、A【分析】根据余角和补角定义解答.【详解】解:的余角的补角是,故选:A .【点睛】此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.二、填空题1、40【分析】首先设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:这个角的补角的度数+它的余角的度数=190,根据等量关系列出方程,再解即可.【详解】解:设这个角为x°,则它的补角为(180-x)°,它的余角为(90-x)°,由题意得:
(180-x)+(90-x)=190,
解得:x=40,
故答案为: 40.【点睛】本题考查余角和补角,关键是掌握如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.2、52°度【分析】两角互补和为180°,两角互余和为90°,先求出∠A,再用90°-∠A即可解出本题.【详解】解:∵∠A的补角为142°,∴∠A=180°-142°=38°,∴∠A的余角为90°-∠A=90°-38°=52°.故答案为:52°.【点睛】本题考查了余角和补角,解题的关键是熟悉两角互余和为90°,互补和为180°.3、15°【分析】根据和为的两个角互为余角计算即可.【详解】解:75°的余角是90°﹣75°=15°.故答案为:15°.【点睛】此题主要考查余角的求解,解题的关键是熟知余角的定义与性质.4、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.5、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.三、解答题1、(1),;(2).【解析】【分析】(1)先根据垂直可得,再根据角的和差即可得;(2)根据(1)的结论即可得出答案.【详解】解:(1),,,,即图中有关角的等量关系有,;(2)由(1)已得:,,.【点睛】本题考查了垂直、角的和差,熟练掌握两条直线互相垂直,则四个角为直角是解题关键.2、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.【解析】【分析】过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可【详解】解:过点E作直线EF∥CD,∠2=∠D,(两直线平行,内错角相等)AB∥CD(已知),EF∥CDAB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)∠B=∠1,(两直线平行,内错角相等)∠1+∠2=∠BED,∠B+∠D=∠BED,(等量代换 )方法与实践:如图②,∵直线AB∥CD∴∠BOD=∠D=53°∵∠BOD=∠E+∠B∴∠E=∠BOD-∠B=53°- 22°=31°.故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31. 【点睛】本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.3、∠EGF=120°.【解析】【分析】过点F作FM∥AB,设AB于EH的交点为N,先设,则,由题意及平行线的性质得,,得到,,由于与互补,得到,最终问题可求解【详解】解:过点F作FM∥AB,设AB于EH的交点为N,如图所示:设,∵GB平分∠EGF,HF平分∠EHD,∴,∵AB//CD,∴FM∥AB∥CD,∴,∴,,即,,∵与互补,∴,∴,∴,∴.【点睛】本题考查平行线的性质及三角形外角的性质,解题的关键是设,且由题意得到x,y的关系.4、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析【解析】【分析】根据题意画出图形,然后结合题意可进行求解.【详解】解:如图,由图可知两条相交的直线,两两相配共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).【点睛】本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.5、(1)①见详解,②20°;(2),过程见解析【解析】【分析】(1)①根据角平分线的定义作图即可;②由补角的定义求得∠AOC的度数,根据角平分线的定义求得∠AOD 的度数,用∠AOD-∠AOE即可得出结果;(2)根据(1)的方法,分别讨论时,时,当时,即可得出与之间的数量关系.【详解】解:(1)①补全图形如图所示:②∵,∴,∵平分,∴,∵,即,∴∴(2),理由如下:∵,∴当时,∴,∵平分.∴,∵,∴,∴,∴当时,∴,∵平分.∴,∵,∴此时点A与点E重合,∴,∴当时,∴∵平分.∴,∵,∴,∴,∴,综上所述,【点睛】本题考查了余角和补角的计算,角平分线的定义以及分类讨论的思想,解题的关键是灵活运用所学知识解决问题.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了下列命题中,为真命题的是,下列命题是假命题的有,下列说法等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共22页。试卷主要包含了下列说法中正确的是,下列语句中,是命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试习题,共23页。试卷主要包含了如图,下列命题中,真命题是等内容,欢迎下载使用。