初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后练习题,共22页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为( )
A.30° B.60° C.30°或60° D.60°或120°
2、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
3、将一副三角板按如图所示位置摆放,已知∠α=30°14′,则∠β的度数为( )
A.75°14′ B.59°86′ C.59°46′ D.14°46′
4、如图,一副三角尺按不同的位置摆放,下列摆放方式中与相等的是( ).
A. B.
C. D.
5、一个角的余角比这个角的补角的一半小40°,则这个角为( )
A.50° B.60° C.70° D.80°
6、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )
A.38° B.42° C.48° D.52°
7、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
8、如图,点在直线上,,若,则的大小为( )
A.30° B.40° C.50° D.60°
9、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
10、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.
2、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
3、如图,已知,CE平分,,则______°.
4、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
证明:∵(已知),
∴(垂直的定义).
∴________,
∵(已知),
∴________(依据1:________),
∴(依据2:________).
5、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.
三、解答题(5小题,每小题10分,共计50分)
1、【感知】已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
【探究】已知:如图②,点E在AB上,且CE平分,.求证:.
【应用】如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
2、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
3、如图,直线AB,CD相交于点O,,OF平分.
(1)写出图中所有与互补的角;
(2)若,求的度数.
4、如图,∠AGB=∠EHF,∠C=∠D.
(1)求证:BD∥CE;
(2)求证:∠A=∠F.
5、如图1,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC=∠AOB,OD平分∠AOC.
(1)分别求∠AOB的补角和∠AOC的度数;
(2)现有射线OE,使得∠BOE=30°.
①小明在图2中补全了射线OE,根据小明所补的图,求∠DOE的度数;
②小静说:“我觉得小明所想的情况并不完整,∠DOE还有其他的结果.”请你判断小静说的是否正确?若正确,请求出∠DOE的其他结果;若不正确,请说明理由.
---------参考答案-----------
一、单选题
1、D
【分析】
根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
【详解】
解:如图1,
∵a∥b,
∴∠1=∠α,
∵c∥d,
∴∠β=∠1=∠α=60°;
如图(2),
∵a∥b,
∴∠α+∠2=180°,
∵c∥d,
∴∠2=∠β,
∴∠β+∠α=180°,
∵∠α=60°,
∴∠β=120°.
综上,∠β=60°或120°.
故选:D.
【点睛】
本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
2、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
3、C
【分析】
观察图形可知,∠β=180°-90°-∠α,代入数据计算即可求解.
【详解】
解:∠β=180°﹣90°﹣∠α
=90°﹣30°14′
=59°46′.
故选:C.
【点睛】
本题考查了余角和补角,准确识图,得到∠β=180°-90°-∠α是解题的关键.
4、C
【分析】
根据同角的余角相等,补角定义,和平角的定义、三角形内角和对各小题分析判断即可得解.
【详解】
解:A、+=180°−90°=90°,互余;
B、+=60°+30°+45°=135°;
C、根据同角的余角相等,可得=;
D、+=180°,互补;
故选:C.
【点睛】
本题考查了余角和补角、三角形内角和,是基础题,熟记概念与性质是解题的关键.
5、D
【分析】
设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.
【详解】
设这个角为x,则它的余角为(90°-x),补角为(180°-x),
依题意得
解得x=80°
故选D.
【点睛】
本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.
6、A
【分析】
利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
【详解】
解:∵AB⊥AC,∠1=52°,
∴∠B=90°﹣∠1
=90°﹣52°
=38°
∵a∥b,
∴∠2=∠B=38°.
故选:A.
【点睛】
本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
7、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
8、D
【分析】
根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.
【详解】
解:∵,
∴∠BOC=180°-150°=30°,
∵,即∠COD=90°,
∴∠BOD=90°-30°=60°,
故选:D
【点睛】
本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.
9、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
10、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
二、填空题
1、,
【分析】
由,,可得再证明可得
【详解】
解: ,,
故答案为:
【点睛】
本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
2、
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
3、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
4、 同角的余角相等 内错角相等,两直线平行
【分析】
根据垂直的定义及平行线的判定定理即可填空.
【详解】
∵(已知),
∴(垂直的定义).
∴,
∵(已知),
∴(同角的余角相等),
∴(内错角相等,两直线平行).
故答案为:;;同角的余角相等;内错角相等,两直线平行.
【点睛】
此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
5、138°
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
又∵∠COD=42°,
∴∠BOC=90°-∠COD=90°-42°=48°,
∴∠AOB=∠AOC+∠BOC=90°+48°=138°.
【点睛】
本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.
三、解答题
1、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【解析】
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
2、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【解析】
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
3、(1),,;(2)30°
【解析】
【分析】
(1)根据邻补角的定义确定出∠AOC和∠BOD,再根据角平分线的定义可得∠AOF=∠EOF,根据垂直的定义可得∠COF=∠DOF=90°,然后根据等角的余角相等求出∠DOE=∠AOC,从而最后得解;
(2)根据角平分线的定义求出∠AOF,再根据余角的定义求出∠AOC,然后根据对顶角相等解答.
【详解】
解:(1)因为直线AB,CD相交于点O,
所以和与互补.
因为OF平分,所以.
因为,所以.
因为,
,
所以,
所以与互补的角有,,.
(2)因为OF平分,所以,
由(1)知,,
所以,
由(1)知,和与互补,
所以(同角的补角相等).
【点睛】
本题考查了余角和补角,对顶角相等的性质,角平分线的定义,难点在于(1)根据等角的余角相等确定出与∠AOD互补的第三个角.
4、(1)证明见解析;(2)证明见解析.
【解析】
【分析】
(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
【详解】
证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
∴∠1=∠EHF,
∴BD∥CE;
(2)∵BD∥CE,
∴∠D=∠2,
∵∠D=∠C,
∴∠2=∠C,
∴AC∥DF,
∴∠A=∠F.
【点睛】
本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
5、(1)80°;(2)①110°;②正确, 50°
【解析】
【分析】
(1)根据补角定义求解即可和已知条件直接求解即可;
(2)①根据角平分线的定义求得∠AOD,进而求得∠BOD,根据∠DOE=∠BOD+∠BOE即可求得∠DOE;②根据题意作出图形,进而结合图形可知∠DOE=∠BOD-∠BOE即可求得∠DOE;
【详解】
解:(1)因为∠AOB=120°,
所以∠AOB的补角为180°-∠AOB=60°.
因为∠AOC=∠AOB,
所以∠AOC=×120°=80°;
(2)①因为OD平分∠AOC,∠AOC=80°,
所以∠AOD=∠AOC=40°,
所以∠BOD=∠AOB-∠AOD=80°,
所以∠DOE=∠BOD+∠BOE=110°;
②正确;如图,
射线OE还可能在∠BOC的内部,
所以∠DOE=∠BOD-∠BOE=
【点睛】
本题考查了求一个角的补角,角平分线的定义,角度的计算,数形结合是解题的关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共20页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课时练习,共25页。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共19页。试卷主要包含了下列命题中,是真命题的是等内容,欢迎下载使用。