年终活动
搜索
    上传资料 赚现金

    2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析)

    2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析)第1页
    2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析)第2页
    2022年最新沪科版九年级数学下册第24章圆同步测试试题(含解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试综合训练题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试综合训练题,共29页。
    沪科版九年级数学下册第24章圆同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).A.20° B.25° C.30° D.40°2、如图,ABCD是⊙O的弦,且,若,则的度数为(    A.30° B.40° C.45° D.60°3、下列图形中,是中心对称图形,但不是轴对称图形的是(    A. B. C. D.4、如图,CD的高,按以下步骤作图:(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于GH两点.(2)作直线GHAB于点E.(3)在直线GH上截取(4)以点F为圆心,AF长为半径画圆交CD于点P则下列说法错误的是(         A. B. C. D.5、下列四个图案中,是中心对称图形但不是轴对称图形的是(    A. B. C. D.6、如图,点ABC均在⊙O上,连接OAOBACBC,如果OAOB,那么∠C的度数为(    A.22.5° B.45° C.90° D.67.5°7、往直径为78cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为(    A.36 cm B.27 cm C.24 cm D.15 cm8、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C.  D.9、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.10、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(      A.60 B.90 C.120 D.180第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.2、如图,正方形ABCD的边长为1,⊙O经过点CCM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边ABAD于点GHBDCGCH分别交于点EF,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:HD=2BG;②∠GCH=45°;③HFEG四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).3、在平面直角坐标系中,点关于原点对称的点的坐标是______.4、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点AB,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.5、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如图所示,将△ABC绕点A按逆时针方向旋转90°后得到△ABC′.则图中阴影部分的面积为_____.三、解答题(5小题,每小题10分,共计50分)1、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.(1)如图2,当t=4 时,∠AOC=     ,∠BOE=     ,∠BOE﹣∠AOC=     (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OAOCOD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.2、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.3、如图,ABC是⊙O的内接三角形,,连接AO并延长交⊙O于点D,过点C作⊙O的切线,与BA的延长线相交于点E(1)求证:ADEC(2)若AD=6,求线段AE的长.4、如图,,点D上一点,相交于点F,且(1)求证:(2)求证:(3)若点D中点,连接,求证:平分5、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于BC两点,点B的坐标为,点D上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOBEAFOCF(依据是    (依据是    ).,.BC的直径(依据是    ).A的坐标为    的半径为     -参考答案-一、单选题1、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.2、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.3、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;B、是中心对称图形但不是轴对称图形,故符合题意;C、既不是轴对称图形也不是中心对称图形,故不符合题意;D、是轴对称图形但不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.4、C【分析】连接AFBF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.【详解】解:连接AFBF,由作法可知,FE垂直平分AB,故A正确;CD的高,,故B正确;,故C错误;∴∠AFE=45°,同理可得∠BFE=45°,∴∠AFB=90°,,故D正确;故选:C.【点睛】本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.5、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【分析】根据同弧所对的圆周角是圆心角的一半即可得.【详解】解:∵故选:B.【点睛】题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.7、C【分析】连接,过点于点,交于点,先由垂径定理求出的长,再根据勾股定理求出的长,进而得出的长即可.【详解】解:连接,过点于点,交于点,如图所示:的直径为中,即水的最大深度为故选:C.【点睛】本题考查了垂径定理、勾股定理等知识,解题的关键是根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、B【详解】解:A.是轴对称图形,不是中心对称图形,故不符合题意;B.既是轴对称图形,又是中心对称图形,故符合题意;C.不是轴对称图形,是中心对称图形,故不符合题意;D.是轴对称图形,不是中心对称图形,故不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.10、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.二、填空题1、【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DECE是直径,∠ECD=45°,根据题意得:AB=2.5,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.2、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCDGM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,CM=CDCH=CH∴△CMH≌△CDHHD=HM,∠HCM=∠HCD同理可证,∴GM=GB,∠GCB=∠GCMGB+DH=GH,无法确定HD=2BG故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDHBD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF +∠GCH+∠EFC=∠DHF +∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,HFEG四点在同一个圆上,故③正确;∵正方形ABCD的边长为1,=1=,∠GAH=90°,AC=GH的中点P,连接PAGH=2PA=∴当PA取最小值时,有最大值,连接PCACPA+PCACPAAC- PC∴当PC最大时,PA最小,∵直径是圆中最大的弦,PC=1时,PA最小,∴当APC三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-∴四边形CGAH面积的最大值为2∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.3、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4、##【分析】先求出点AB的坐标,过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点AB两点,∴令,则;令,则∴点A为(2,0),点B为(0,4),过点AAFAB,交直线BC于点F,过点FEFx轴,垂足为E,如图,∴△ABF是等腰直角三角形,AF=AB∴△ABO≌△FAEAAS),AO=FEBO=AE∴点F的坐标为();设直线BC,则,解得:∴直线BC的函数表达式为故答案为:【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.5、【分析】利用勾股定理求出ACAB的长,根据阴影面积等于求出答案.【详解】解:由旋转得=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,AC=2BC=2,AB=∴阴影部分的面积==,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键.三、解答题1、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t 的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t =DOC=25,t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,t=62,综上,满足条件的t 的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.2、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意α的取值范围为:(2)补全图形如下:(3)AE=AF+CE证明:在AE上截取AH=AF,由旋转可得:AB=AD∴∠D=∠ABF∵△ABC为等边三角形,AB=AC,∠BAC=ACB=60°,AD=AC∵∠DAF=∠CAH∴△AFD≌△AHC∴∠AFD=∠AHC,∠D=∠ACH∴∠AFB=∠CHE∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCECE=HEAE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.3、(1)见解析;(2)6【分析】(1)连接OC,根据CE是⊙O的切线,可得∠OCE,根据圆周角定理,可得∠AOC=,从而得到∠AOC+∠OCE,即可求证;(2)过点AAFECEC于点F,由∠AOCOAOC,可得∠OAC,从而得到∠BAD,再由ADEC,可得,然后证得四边形OAFC是正方形,可得,从而得到AF=3,再由直角三角形的性质,即可求解.【详解】证明:(1)连接OCCE是⊙O的切线,∴∠OCE∵∠ABC∴∠AOC=2∠ABC∵∠AOC+∠OCEADEC(2)解:过点AAFECEC于点F∵∠AOCOAOC∴∠OAC∵∠BAC∴∠BADADEC∵∠OCE,∠AOC,∠AFC=90°,∴四边形OAFC是矩形,OAOC∴四边形OAFC是正方形,RtAFE中,AE=2AF=6.【点睛】本题主要考查了圆周角定理,切线的性质,直角三角形的性质,正方形的判定和性质,熟练掌握相关知识点是解题的关键.4、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在中,,故可证明三角形相似.(2)由得出(3)法一:由题意知,由,有,所以可得,又因为可得;由于,进而说明,得出平分.法二:通过得出FDCE四点共圆,由,从而得出平分【详解】解:(1)证明在 (2)证明:在 (3)证明:D中点平分法二:FDCE四点共圆D点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.5、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答.【详解】解:如图2,连接BC.作AEOBEAFOCF(依据是垂径定理)(依据是圆周角定理).,.BC的直径(依据是圆周角定理).A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键. 

    相关试卷

    2020-2021学年第24章 圆综合与测试精练:

    这是一份2020-2021学年第24章 圆综合与测试精练,共32页。试卷主要包含了下列判断正确的个数有等内容,欢迎下载使用。

    数学九年级下册第24章 圆综合与测试精练:

    这是一份数学九年级下册第24章 圆综合与测试精练,共36页。

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共28页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map