年终活动
搜索
    上传资料 赚现金

    2022年最新沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)

    2022年最新沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第1页
    2022年最新沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第2页
    2022年最新沪科版九年级数学下册第24章圆达标测试试题(含答案及详细解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共32页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为(  )

    A.5厘米 B.4厘米 C.厘米 D.厘米
    2、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    3、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    4、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )

    A.105° B.120° C.135° D.150°
    5、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP2 D.0≤OP4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    6、D
    【分析】
    根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.
    【详解】
    解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,
    ∴∠ECF=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    故选:D.
    【点睛】
    本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.
    7、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    8、B
    【分析】
    根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.
    【详解】
    解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.

    故选:B.
    【点睛】
    本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.
    9、C
    【分析】
    根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.
    【详解】
    解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,
    ∴d>r,
    ∴点A在⊙O外,
    故选:C.
    【点睛】
    本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.
    10、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    二、填空题
    1、60
    【分析】
    在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.
    【详解】
    解:如图作OE⊥BC于E.

    ∵OE⊥BC,
    ∴BE=EC=,∠BOE=∠COE,
    ∴OE=1,
    ∴OB=2OE,
    ∴∠OBE=30°,
    ∴∠BOE=∠COE=60°,
    ∴∠BOC=120°,
    ∴∠BAC=60°,
    故答案为:60.
    【点睛】
    本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
    2、
    【分析】
    先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.
    【详解】
    解:∵BC是圆O的切线,
    ∴∠OBC=90°,
    ∵四边形ABCO是平行四边形,
    ∴AO=BC,
    又∵AO=BO,
    ∴BO=BC,
    ∴∠BOC=∠BCO=45°,
    ∵OD=OB,
    ∴∠ODB=∠OBD,
    ∵∠ODB+∠OBD=∠BOC,
    ∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,
    故答案为:22.5°.
    【点睛】
    本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.
    3、2
    【分析】
    取AC中点O,由勾股定理的逆定理可知∠ADC=90°,则点D在以O为圆心,以AC为直径的圆上,作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,由此求解即可.
    【详解】
    解:如图所示,取AC中点O,
    ∵,即,
    ∴∠ADC=90°,
    ∴点D在以O为圆心,以AC为直径的圆上,
    作△ADC外接圆,连接BO,交圆O于,则长的最小值即为,
    ∵,,∠ACB=90°,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:2.

    【点睛】
    本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D的运动轨迹.
    4、
    【分析】
    根据旋转找出规律后再确定坐标.
    【详解】
    ∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
    ∴每6次翻转为一个循环组循环,
    ∵,
    ∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,
    ∵,
    ∴,
    ∴翻转前进的距离为:,

    如图,过点B作BG⊥x于G,
    则∠BAG=60°,
    ∴,

    ∴,
    ∴点B的坐标为.
    故答案为:.
    【点睛】
    题考查旋转的性质与正多边形,由题意找出规律是解题的关键.
    5、2 2
    【分析】
    关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a、b即可求得答案.
    【详解】
    解:∵点和点关于原点对称,
    ∴,
    ∴,
    故答案为:2;2.
    【点睛】
    本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.
    三、解答题
    1、
    (1)见解析
    (2)10
    【分析】
    (1)作BC的垂直平分线,与直线CD的交点即为圆心;
    (2)连接OA,根据勾股定理列出方程即可求解.
    (1)
    解:如图所示,点O即是圆心;
    (2)
    解:连接OA,
    ∵,并经过圆心O,,
    ∴,
    ∵,

    解得,,
    答:半径为10.

    【点睛】
    本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径.
    2、
    (1)8
    (2)
    (3)或.
    【分析】
    (1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;
    (2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;
    (3)分两种情况讨论,由相似三角形和勾股定理可求解.
    (1)
    如图2,过点O作OH⊥AC于点H,

    由垂径定理得:AH=CH=AC,
    在Rt△OAH中,,
    ∴设OH=3x,AH=4x,
    ∵OH2+AH2=OA2,
    ∴(3x)2+(4x)2=52,
    解得:x=±1,(x=﹣1舍去),
    ∴OH=3,AH=4,
    ∴AC=2AH=8;
    (2)
    如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,

    ∵∠DEO=∠AEC,
    ∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;


    ∴∠ACD≠∠DOE
    ∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,
    ∴当△DOE与△AEC相似时,∠DOE=∠A,
    ∴OD∥AC,
    ∴,
    ∵OD=OA=5,AC=8,
    ∴,
    ∴,
    ∵∠AGE=∠AHO=90°,
    ∴GE∥OH,

    ∴△AEG∽△AOH,
    ∴,
    ∴,
    ∴,
    ∴,,
    在Rt△CEG中,;
    (3)
    当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,

    由(1)可得 OH=3,AH=4,AC=8,
    ∵OE=1,
    ∴AE=4,ME=6,
    ∵EG∥OH,
    ∴△AEG∽△AOH,
    ∴,
    ∴AG=,EG=,
    ∴GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=2;
    当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,

    同理可求EG=,AG=,AE=6,GC=,
    ∴EC===,
    ∵AM是直径,
    ∴∠ADM=90°=∠EGC,
    又∵∠M=∠C,
    ∴△EGC∽△ADM,
    ∴,
    ∴,
    ∴AD=,
    综上所述:AD的长是或
    【点睛】
    本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.
    3、(1)见解析;(2)3
    【分析】
    (1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;
    (2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=BC=3.
    【详解】
    解:(1)证明:如图连接OC、OB.
    ∵是等边三角形



    又 ∵



    ∴与⊙O相切;
    (2)∵四边形ABCD是⊙O的内接四边形,


    ∵D为的中点,





    【点睛】
    本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.
    4、2+
    【分析】
    连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.利用勾股定理构建方程解决问题即可.
    【详解】
    解:连接AC,CM,AB,过点C作CH⊥OA于H,设OC=a.

    ∵∠AOB=90°,
    ∴AB是直径,
    ∵A(-4,0),B(0,2),
    ∴,
    ∵∠AMC=2∠AOC=120°,

    在Rt△COH中,,

    在Rt△ACH中,AC2=AH2+CH2,
    ∴,
    ∴a=2+ 或2-(因为OC>OB,所以2-舍弃),
    ∴OC=2+,
    故答案为:2+.
    【点睛】
    本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.
    5、
    (1)4
    (2)
    【分析】
    (1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN;
    (2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.
    (1)
    解:由旋转知:AM=AC=1,BN=BC=3-x,
    ∴△ABC的周长为:AC+AB+BC=MN=4;
    故答案为:4;
    (2)
    解:∵α+β=270°,
    ∴∠CAB+∠CBA=360°-270°=90°,
    ∴∠ACB=180°-(∠CAB+∠CBA)
    =180°-90°
    =90°,
    ∴AC2+BC2=AB2,
    即12+(3-x)2=x2,
    解得.
    【点睛】
    本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.

    相关试卷

    数学九年级下册第24章 圆综合与测试同步测试题:

    这是一份数学九年级下册第24章 圆综合与测试同步测试题,共30页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。

    2021学年第24章 圆综合与测试练习:

    这是一份2021学年第24章 圆综合与测试练习,共32页。

    初中沪科版第24章 圆综合与测试随堂练习题:

    这是一份初中沪科版第24章 圆综合与测试随堂练习题,共33页。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map