年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪科版九年级数学下册第24章圆达标测试练习题

    2022年精品解析沪科版九年级数学下册第24章圆达标测试练习题第1页
    2022年精品解析沪科版九年级数学下册第24章圆达标测试练习题第2页
    2022年精品解析沪科版九年级数学下册第24章圆达标测试练习题第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版第24章 圆综合与测试当堂达标检测题

    展开

    这是一份沪科版第24章 圆综合与测试当堂达标检测题,共29页。试卷主要包含了在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(    A. B.C. D.2、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°3、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.104、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).A.20° B.25° C.30° D.40°5、如图,的直径,外一点,过的切线,切点为,连接,点右侧的半圆周上运动(不与重合),则的大小是(    A.19° B.38° C.52° D.76°6、如图,AB的直径,,劣弧BC的长是劣弧BD长的2倍,则AC的长为(    A. B. C.3 D.7、如图,PAPB是⊙O的切线,AB为切点,PA=4,则PB的长度为(    A.3 B.4 C.5 D.68、如图,在RtABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DEAC边于点F,则图中阴影部分的面积为(    A.3 B.1 C. D.9、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为(      A.140° B.100° C.80° D.40°10、在△ABC中,,点OAB中点.以点C为圆心,CO长为半径作⊙C,则⊙CAB的位置关系是(    A.相交 B.相切C.相离 D.不确定第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、一块直角三角板的30°角的顶点A落在上,两边分别交BC两点,若弦BC长为4,则的半径为______.2、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.3、一个五边形共有__________条对角线.4、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π5、若一次函数ykx+8(k≠0)的图象与x轴、y轴分别交于AB两点,当k的取值变化时,点A随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知线段,点A在线段上,且,点B为线段上的一个动点.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,旋转角分别为.若旋转后MN两点重合成一点C(即构成),设(1)的周长为_______;(2)若,求x的值.2、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.(1)图1中的“弦图”的四个直角三角形组成的图形是     对称图形(填“轴”或“中心”).(2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.3、如图,APBC是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PAPBPC.4、如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点BO的切线交CE的延长线于点D(1)求证:DBDE(2)若AB12,BD5,求AC长.5、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点AADOC,交BC的延长线于D(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABCAB的长. -参考答案-一、单选题1、A【分析】设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当上时, 上时,延长交于点 同理: 为等边三角形, 上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.2、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.3、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、B【分析】连接的直径,求解 结合的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 的直径, 的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.6、D【分析】连接,根据求得半径,进而根据的长,勾股定理的逆定理证明,根据弧长关系可得,即可证明是等边三角形,求得,进而由勾股定理即可求得【详解】如图,连接 是直角三角形,且是等边三角形是直径,故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得的长是解题的关键.7、B【分析】由切线的性质可推出.再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PAPB是⊙O的切线,AB为切点,∴在中,故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、D【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设相交于点旋转,是等边三角形,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.9、C【分析】,进而求解的值.【详解】解:由题意知故选C.【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.10、B【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断的切线,进而可得⊙CAB的位置关系【详解】解:连接,,点OAB中点.CO为⊙C的半径,的切线,CAB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.二、填空题1、4【分析】连接OBOC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.【详解】连接OBOC,如图所示:∵∠A=30°,∴∠BOC=60°,OB=OC∴△BOC是等边三角形,,即⊙O的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.2、【分析】根据圆心角为的扇形面积是进行解答即可得.【详解】解:这个扇形的面积故答案是:【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.3、5【分析】n边形的对角线有: 条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.4、【分析】先求出ABC坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.【详解】CCDOAD∵一次函数的图象与x轴交于点A,与y轴交于点B∴当时,B点坐标为(0,1)时,A点坐标为∵作的外接圆∴线段AB中点C的坐标为,∴三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.5、8【分析】根据一次函数解析式可得:,过点B轴,过点A,过点Q,由旋转的性质可得,依据全等三角形的判定定理及性质可得:,即可确定点Q的坐标,然后利用勾股定理得出OQ的长度,最后考虑在什么情况下取得最小值即可.【详解】解:函数得:,过点B轴,过点A,过点Q,连接OQ,如图所示:将线段BA绕点B逆时针旋转得到线段BQ中,Q的坐标为时,取得最小值为8,故答案为:8.【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.三、解答题1、(1)4(2)【分析】(1)由旋转知:AM=AC=1,BN=BC,将△ABC的周长转化为MN(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋转知:AM=AC=1,BN=BC=3-x∴△ABC的周长为:AC+AB+BC=MN=4;故答案为:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA=180°-90°=90°,AC2+BC2=AB2即12+(3-x2=x2解得【点睛】本题主要考查了旋转的性质,勾股定理等知识,证明∠ACB=90°是解题的关键.2、(1)中心(2)见解析【分析】(1)利用中心对称图形的意义得到答案即可;(2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.(1)图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,故答案为:中心;(2)如图2是轴对称图形而不是中心对称图形;图3既是轴对称图形,又是中心对称图形.【点睛】本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.3、(1)△ABC是等边三角形,证明见解析;(2)见解析【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)如图所示,在PC取一点E使得AE=AP,先证明△APE是等边三角形,得到AP=PE,∠AEP=60°,可以推出∠AEC=∠APB,然后证明△APB≌△AEC得到BP=CE,即可证明PC=PE+CE=AP+BP【详解】解:(1)△ABC是等边三角形.证明如下:由圆周角定理:∠BAC=∠CPB,∠ABC=∠APC∵∠APC=∠CPB=60°,∴∠BAC=∠ABC=60°,∴∠ACB=180°-∠BAC-∠ABC=180°-60°-60°=60°.∴△ABC是等边三角形.(2)如图所示,在PC取一点E使得AE=AP∵∠APE=60°,AP=AE∴△APE是等边三角形,AP=PE,∠AEP=60°,∴∠AEC=120°,又∵∠APC=∠CPB=60°,∴∠APB=120°,∴∠AEC=∠APB∵△ABC是等边三角形,AB=AC又∵∠ABP=∠ACE∴△APB≌△AECAAS),BP=CEPC=PE+CE=AP+BP【点睛】本题考查了圆周角定理、等边三角形的性质与判定,全等三角形的性质与判定,解题的关键是掌握圆周角定理,正确求出∠ABC=∠BAC=60°.4、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA∴∠1+∠3=90°, BD为切线,OBBD∴∠2+∠5=90°, OA=OB∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,DE=DB.(2)如图,作DFABF连接OE,∵DB=DEEF=BE=3,在Rt△DEF中,EF=3,DE=BD=5,DF=∴sin∠DEF== ∵∠AOE,∴∠AOE=∠DEF∴在Rt△AOE中,sin∠AOE=AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.5、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点OOEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,则AB=【详解】解:(1)如图所示,连接OA∵∠CBA=45°,∴∠COA=90°,      ADOC∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上,       AD是⊙O的切线;     (2)连接OB,过点OOEAB,垂足为E∵∠OCB=75°,OB=OC∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,              由(1)证可得∠AOC=90°,∴∠AOB=120°,                   OA=OB∴∠OAB=∠OBA=30°,又∵OEABAE=BE   RtAOE中,AO=2,∠OAE=30°,OE=AO=1,                          由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在,下列语句判断正确的是,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试练习:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共30页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共29页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map