年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析沪科版九年级数学下册第24章圆达标测试练习题(精选)

    2022年最新精品解析沪科版九年级数学下册第24章圆达标测试练习题(精选)第1页
    2022年最新精品解析沪科版九年级数学下册第24章圆达标测试练习题(精选)第2页
    2022年最新精品解析沪科版九年级数学下册第24章圆达标测试练习题(精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习,共30页。试卷主要包含了点P关于原点对称的点的坐标是等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4
    2、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    3、的边经过圆心,与圆相切于点,若,则的大小等于( )

    A. B. C. D.
    4、在半径为6cm的圆中,的圆心角所对弧的弧长是( )
    A.cm B.cm C.cm D.cm
    5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    6、若的圆心角所对的弧长是,则此弧所在圆的半径为( )
    A.1 B.2 C.3 D.4
    7、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦 D.垂直于弦的直径平分这条弦
    8、点P(-3,1)关于原点对称的点的坐标是( )
    A.(-3,1) B.(3,1) C.(3,-1) D.(-3,-1)
    9、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )

    A.8 B. C. D.
    10、下列图形中,既是中心对称图形又是抽对称图形的是( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一块直角三角板的30°角的顶点A落在上,两边分别交于B、C两点,若弦BC长为4,则的半径为______.
    2、如图,在平面直角坐标系xOy中,P为x轴正半轴上一点.已知点,,为的外接圆.

    (1)点M的纵坐标为______;
    (2)当最大时,点P的坐标为______.
    3、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)
    4、如图,四边形ABCD内接于圆,E为CD延长线上一点, 图中与∠ADE相等的角是 _________ .

    5、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
    已知:⊙O(纸片),其半径为.
    求作:一个正方形,使其面积等于⊙O的面积.
    作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
    ②如图2,以点为圆心,为半径画弧交直线于点;
    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
    ④取的中点,以点为圆心,为半径画半圆,交射线于点;
    ⑤以为边作正方形.
    正方形即为所求.

    根据上述作图步骤,完成下列填空:
    (1)由①可知,直线为⊙O的切线,其依据是________________________________.
    (2)由②③可知,,,则_____________,____________(用含的代数式表示).
    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
    三、解答题(5小题,每小题10分,共计50分)
    1、解题与遐想.
    如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=4,BD=5.求Rt△ABC的面积.
    王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉…
    赵丽华:我把4和5换成m、n再算一遍,△ABC的面积总是m•n!确实非常神奇了…
    数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?
    霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?

    计算验证
    (1)通过计算求出Rt△ABC的面积.
    拼图演绎
    (2)将Rt△ABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.

    尺规作图
    (3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个Rt△ABC,使它的内切圆与斜边AB相切于点D.(保留作图的痕迹,写出必要的文字说明)

    2、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).

    (1)直接写出点B关于原点对称的点B′的坐标:  ;
    (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1;
    (3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2.
    3、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
    4、如图,点A是外一点,过点A作出的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)

    5、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.

    (1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;
    (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;
    (3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、D
    【分析】
    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
    【详解】
    解:∵在Rt△ABC中,AB=6,BC=8,
    ∴,
    由旋转性质可知,AB= AB'=6,BC= B'C'=8,
    ∴B'C=10-6=4,
    在Rt△B'C'C中,,
    故选:D.
    【点睛】
    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
    2、D
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    3、A
    【分析】
    连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案.
    【详解】
    解:连接,



    与圆相切于点,


    故选:A.
    【点睛】
    本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
    4、C
    【分析】
    直接根据题意及弧长公式可直接进行求解.
    【详解】
    解:由题意得:的圆心角所对弧的弧长是;
    故选C.
    【点睛】
    本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.
    5、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    6、C
    【分析】
    先设半径为r,再根据弧长公式建立方程,解出r即可
    【详解】
    设半径为r,
    则周长为2πr,
    120°所对应的弧长为
    解得r=3
    故选C
    【点睛】
    本题考查弧长计算,牢记弧长公式是本题关键.
    7、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    8、C
    【分析】
    据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),然后直接作答即可.
    【详解】
    解:根据中心对称的性质,可知:点P(3,1)关于原点O中心对称的点的坐标为(3,1).
    故选:C.
    【点睛】
    本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.
    9、C
    【分析】
    如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.
    【详解】
    解:如图所示,连接CP,
    ∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,
    ∴∠CPO=90°,∠COP=45°,
    ∴∠PCO=∠COP=45°,
    ∴CP=OP=4,
    ∴,
    故选C.

    【点睛】
    本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.
    10、B
    【详解】
    解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .既是轴对称图形,也是中心对称图形,故此选项符合题意;
    .是轴对称图形,不是中心对称图形,故此选项不符合题意;
    .不是轴对称图形,是中心对称图形,故此选项不符合题意;
    故选:B.
    【点睛】
    本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、4
    【分析】
    连接OB、OC,由题意易得∠BOC=60°,则有△BOC是等边三角形,然后问题可求解.
    【详解】
    连接OB、OC,如图所示:

    ∵∠A=30°,
    ∴∠BOC=60°,
    ∵OB=OC,
    ∴△BOC是等边三角形,
    ∵,
    ∴,即⊙O的半径为4.
    故答案为:4.
    【点睛】
    本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.
    2、5 (4,0)
    【分析】
    (1)根据点M在线段AB的垂直平分线上求解即可;
    (2)点P在⊙M切点处时,最大,而四边形OPMD是矩形,由勾股定理求解即可.
    【详解】
    解:(1)∵⊙M为△ABP的外接圆,
    ∴点M在线段AB的垂直平分线上,
    ∵A(0,2),B(0,8),
    ∴点M的纵坐标为:,
    故答案为:5;
    (2)过点,,作⊙M与x轴相切,则点M在切点处时,最大,
    理由:
    若点是x轴正半轴上异于切点P的任意一点,
    设交⊙M于点E,连接AE,则∠AEB=∠APB,
    ∵∠AEB是ΔAE的外角,
    ∴∠AEB>∠AB,
    ∵∠APB>∠AB,即点P在切点处时,∠APB最大,
    ∵⊙M经过点A(0,2)、B(0,8),
    ∴点M在线段AB的垂直平分线上,即点M在直线y=5上,
    ∵⊙M与x轴相切于点P,MP⊥x轴,从而MP=5,即⊙M的半径为5,
    设AB的中点为D,连接MD、AM,如上图,则MD⊥AB,AD=BD=AB=3,BM=MP=5,
    而∠POD=90°,
    ∴四边形OPMD是矩形,从而OP=MD,
    由勾股定理,得
    MD=,
    ∴OP=MD=4,
    ∴点P的坐标为(4,0),
    故答案为:(4,0).

    【点睛】
    本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键.
    3、
    【分析】
    已知扇形的圆心角为,半径为2,代入弧长公式计算.
    【详解】
    解:依题意,n=,r=2,
    ∴扇形的弧长=.
    故答案为:.
    【点睛】
    本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.
    4、∠ABC
    【分析】
    根据圆内接四边形的性质可得,再由题意可得,由等式的性质即可得出结果.
    【详解】
    解:∵四边形ABCD内接于圆,
    ∴,
    ∵E为CD延长线上一点,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    题目主要考查圆内接四边形的性质,熟练掌握这个性质是解题关键.
    5、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
    【分析】
    (1)根据切线的定义判断即可.
    (2)由=AC+,计算即可;根据计算即可.
    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
    【详解】
    解:(1)∵⊙O的直径,作射线,过点作的垂线,
    ∴经过半径外端且垂直于这条半径的直线是圆的切线;
    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
    (2)根据题意,得AC=r,==πr,
    ∴=AC+=r+πr,
    ∴=;
    ∵,
    ∴MA=-r=,
    故答案为:,;
    (3)如图,连接ME,
    根据勾股定理,得
    =
    =;

    故答案为:.
    【点睛】
    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
    三、解答题
    1、(1)S△ABC=20;(2)见解析;(3)见解析.
    【分析】
    (1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;
    (2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;
    (3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.
    【详解】
    解:(1)如图1,

    设⊙O的半径为r,
    连接OE,OF,
    ∵⊙O内切于△ABC,
    ∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,
    ∴∠OEC=∠OFC=∠C=90°,
    ∴四边形ECFO是矩形,
    ∴CF=OE=r,CE=OF=r,
    ∴AC=4+r,BC=5+r,
    在Rt△ABC中,由勾股定理得,
    (r+4)2+(r+5)2=92,
    ∴r2+9r=20,
    ∴S△ABC=



    =20;
    (2)
    如图2,

    (3)设△ABC的内切圆记作⊙F,
    ∴AF和BF平分∠BAC和∠ABC,FD⊥AB,
    ∴∠BAF=∠CAB,∠ABF=,
    ∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,
    ∴∠AFB=135°,
    可以按以下步骤作图(如图3):
    ①以BA为直径作圆,作AB的垂直平分线交圆于点E,
    ②以E为圆心,AE为半径作圆,
    ③过点D作AB的垂线,交圆于F,
    ④连接EF并延长交圆于C,连接AC,BC,
    则△ABC就是求作的三角形.

    【点睛】
    本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.
    2、(1)(4,﹣1);(2)见解析;(3)见解析.
    【分析】
    (1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;
    (2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;
    (3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.
    【详解】
    (1)点B关于原点对称的点B′的坐标为(4,﹣1),
    故答案为:(4,﹣1);
    (2)如图所示,△A1B1C1即为所求.

    (3)如图所示,△A2B2C2即为所求.
    【点睛】
    本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.
    3、(1)①③;(2)点N的横坐标;(3)或.
    【分析】
    (1)在坐标系中作出圆及三个函数图象,即可得;
    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
    【详解】
    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;
    (2)如图所示:

    ∵直线l是的关联直线,
    ∴直线l的临界状态是与相切的两条直线和,
    当临界状态为时,连接TM,
    ∴,,
    ∵当时,,
    当时,,
    ∴,
    ∴为等腰直角三角形,
    ∴,

    ∴点,
    同理可得当临界状态为时,
    点,
    ∴点N的横坐标;
    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;

    设点,直线HB的解析式为,直线HD的解析式为,
    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最大值为,
    ②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
    设点,直线HB的解析式为,直线HD的解析式为,

    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最小值为,
    ③当时,两条直线与圆无公共点,不符合题意,
    ∴,
    综上可得:或.
    【点睛】
    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
    4、见解析
    【分析】
    先作线段的垂直平分线.确定的中点,再以中点为圆心,一半为半径作圆交于点,然后作直线,则根据圆周角定理可得为所求.
    【详解】
    如图,直线AB就是所求作的,
    (作法不唯一,作出一条即可,需要有作图痕迹)

    【点睛】
    本题考查了作图复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    5、
    (1)30°,70°,40°;
    (2)∠AOC-∠BOE=40°,理由见解析;
    (3)t 的取值为5或20或62
    【分析】
    (1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;
    (2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;
    (3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.
    (1)
    解:∵∠EOC=130°,∠AOB=∠BOE=90°,
    ∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,
    当t=4时,旋转角4×5°=20°,
    ∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,
    ∠BOE-∠AOC=70°-30°=40°,
    故答案为:30°,70°,40°;
    (2)
    解:∠AOC-∠BOE=40°,理由为:
    设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,
    ∠AOC=x-50°,∠BOE=x-90°,
    ∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;
    (3)
    解:存在,
    ①当OA为∠DOC的平分线时,旋转角5t =∠DOC=25,
    ∴t=5;
    ②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,
    ∴t=20;
    ③当OD为∠COA的平分线时,360-5t=∠DOC=50,
    ∴t=62,
    综上,满足条件的t 的取值为5或20或62.
    【点睛】
    本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.

    相关试卷

    沪科版九年级下册第26章 概率初步综合与测试练习:

    这是一份沪科版九年级下册第26章 概率初步综合与测试练习,共20页。试卷主要包含了一个不透明的口袋里有红等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在,下列语句判断正确的是,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共31页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断正确的个数有,点P关于原点对称的点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map