高考数学(理数)二轮复习专题强化训练03《不等式》 (学生版)
展开
这是一份高考数学(理数)二轮复习专题强化训练03《不等式》 (学生版),共3页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
一、选择题1.设x,y满足约束条件则z=2x+y的最小值与最大值的和为( )A.7 B.8C.13 D.142.已知x>0,y>0,且4x+y=xy,则x+y的最小值为( )A.8 B.9C.12 D.163.(一题多解)设函数f(x)=则满足不等式f(x2-2)>f(x)的x的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-)∪(,+∞)C.(-∞,-)∪(2,+∞)D.(-∞,-1)∪(,+∞)4.(一题多解)若关于x的不等式x2+2ax+1≥0在[0,+∞)上恒成立,则实数a的取值范围为( )A.(0,+∞) B.[-1,+∞)C.[-1,1] D.[0,+∞)5.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A.甲是工人,乙是知识分子,丙是农民B.甲是知识分子,乙是农民,丙是工人C.甲是知识分子,乙是工人,丙是农民D.甲是农民,乙是知识分子,丙是工人6.若max{s1,s2,…,sn}表示实数s1,s2,…,sn中的最大者.设A=(a1,a2,a3),B=,记A⊗B=max{a1b1,a2b2,a3b3}.设A=(x-1,x+1,1),B=,若A⊗B=x-1,则x的取值范围为( )A.[1-,1] B.[1,1+]C.[1-,1] D.[1,1+]7.某班级有一个学生A在操场上绕圆形跑道逆时针方向匀速跑步,每52秒跑完一圈,在学生A开始跑步时,在教室内有一个学生B,往操场看了一次,以后每50秒他都往操场看一次,则该学生B“感觉”到学生A的运动是( )A.逆时针方向匀速前跑B.顺时针方向匀速前跑C.顺时针方向匀速后退D.静止不动8.已知变量x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最小值为2,则+的最小值为 ( )A.2+ B.5+2C.8+ D.29.(一题多解)设x,y满足约束条件若z=2x+y的最大值为,则a的值为( )A.- B.0C.1 D.-或110.某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为 ( ) 甲乙原料限额A/吨3212B/吨128A.15万元 B.16万元C.17万元 D.18万元 11.国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹(一根根同样长短和粗细的小棍子)来进行运算.算筹的摆放有纵式、横式两种(如图所示).当表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空.例如3 266用算筹表示就是,则8 771用算筹应表示为( )12.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.它体现了一种无限与有限的转化过程.比如在表达式1+中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+=x求得x=.类比上述过程,则=( )A.3 B.C.6 D.2二、填空题13.在R上定义运算:x*y=x(1-y),若不等式(x-a)*(x+a)≤1对任意的x恒成立,则实数a的取值范围是________.14.设z=kx+y,其中实数x,y满足若z的最大值为12,则实数k=________.15.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中有一人是罪犯,由此可判断罪犯是________.16.记min{a,b}为a,b两数的最小值.当正数x,y变化时,令t=min,则t的最大值为______.
相关试卷
这是一份高考数学(理数)二轮复习专题强化训练22《不等式选讲》 (学生版),共4页。试卷主要包含了已知函数f=|ax-1|-x.,已知函数f=|2x+3a2|.,已知函数f=x2-|x|+1.等内容,欢迎下载使用。
这是一份高考数学(理数)二轮复习专题强化训练20《统计案例》 (学生版),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高考数学(理数)二轮复习专题强化训练19《概率与随机分布》 (学生版),共8页。