|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题训练试卷(含答案解析)
    立即下载
    加入资料篮
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题训练试卷(含答案解析)01
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题训练试卷(含答案解析)02
    2021-2022学年基础强化沪科版九年级数学下册第24章圆专题训练试卷(含答案解析)03
    还剩25页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试测试题

    展开
    这是一份沪科版九年级下册第24章 圆综合与测试测试题,共28页。试卷主要包含了等边三角形,如图,是的直径,等内容,欢迎下载使用。

    沪科版九年级数学下册第24章圆专题训练

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).

    A.20° B.25° C.30° D.40°

    2、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为(   

    A.1cm B.2cm C.3cm D.4cm

    3、如图,在中,,将绕点C逆时针旋转90°得到,则的度数为(   

    A.105° B.120° C.135° D.150°

    4、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是(     

    A.2个 B.3个 C.4个 D.5个

    5、计算半径为1,圆心角为的扇形面积为(   

    A. B. C. D.

    6、如图,在RtABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=(  )

    A.10 B.2 C.2 D.4

    7、如图,的直径,上的两点,若,则   

    A.15° B.20° C.25° D.30°

    8、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是(   

    A.1 B. C. D.2

    9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(   

    A.  B. 

    C.  D.

    10、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是(   

    A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径

    C.直径是最长的弦 D.垂直于弦的直径平分这条弦

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.

    2、边长为2的正三角形的外接圆的半径等于___.

    3、如图AB为⊙O的直径,点PAB延长线上的点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE垂线ACBD,垂足分别为CD,连接AM,则下列结论正确的是______(写所有正确论的号)

    AM平分∠CAB;②;③若AB=4,∠APE=30°,则的长为;④若AC=3BD,则有tan∠MAP=

    4、已知60°的圆心角所对的弧长是3.14厘米,则它所在圆的周长是______厘米.

    5、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).

    2、如图,AB是⊙O的直径,点C是⊙O上一点连接BC,半径ODBC

    (1)求证:弧AD=弧CD

    (2)连接AC、BD相交于点FACOD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CDEF的长.

    3、在等边中,将线段AB绕点A顺时针旋转得到线段AD

    (1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;

    (2)在(1)的条件下连接BD,交CA的延长线于点F

    ①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.

    4、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过ABC三点的抛物线上.

    (1)求抛物线的解析式;

    (2)求过ABC三点的圆的半径;

    (3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;

    5、如图,以四边形的对角线为直径作圆,圆心为,点上,过点的延长线于点,已知平分

    (1)求证:切线;

    (2)若,求的半径和的长.

     

    -参考答案-

    一、单选题

    1、B

    【分析】

    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.

    【详解】

    解:连接OA,如图,

    PA是⊙O的切线,

    OAAP

    ∴∠PAO=90°,

    ∵∠P=40°,

    ∴∠AOP=50°,

    OA=OB

    ∴∠B=∠OAB

    ∵∠AOP=∠B+∠OAB

    ∴∠B=∠AOP=×50°=25°.

    故选:B

    【点睛】

    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.

    2、B

    【分析】

    连接OB,过点OOCAB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可.

    【详解】

    解:连接OB,过点OOCAB于点D,交⊙O于点C,如图所示:

    AB=8cm,

    BD=AB=4(cm),

    由题意得:OB=OC==5cm,

    RtOBD中,OD=(cm),

    CD=OC-OD=5-3=2(cm),

    即水的最大深度为2cm,

    故选:B.

    【点睛】

    本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.

    3、B

    【分析】

    由题意易得,然后根据三角形外角的性质可求解.

    【详解】

    解:由旋转的性质可得:

    故选B.

    【点睛】

    本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.

    4、A

    【分析】

    根据轴对称图形与中心对称图形的概念进行判断.

    【详解】

    解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;

    等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;

    共2个既是轴对称图形又是中心对称图形.

    故选:A.

    【点睛】

    此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.

    5、B

    【分析】

    直接根据扇形的面积公式计算即可.

    【详解】

    故选:B.

    【点睛】

    本题考查了扇形的面积的计算,熟记扇形的面积公式是解题的关键.

    6、D

    【分析】

    首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在RtB'C'C中利用勾股定理求解.

    【详解】

    解:∵在RtABC中,AB=6,BC=8,

    由旋转性质可知,AB= AB'=6,BC= B'C'=8,

    B'C=10-6=4,

    RtB'C'C中,

    故选:D.

    【点睛】

    本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.

    7、C

    【分析】

    根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.

    【详解】

    解:∵∠BOC=130°,

    ∴∠BDC=BOC=65°,

    AB是⊙O的直径,

    ∴∠ADB=90°,

    ∴∠ADC=90°-65°=25°,

    故选:C.

    【点睛】

    本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.

    8、B

    【分析】

    利用三角函数及勾股定理求出BC、AB,连接CD,过点CCEABE,利用,求出BE,根据垂径定理求出BD即可得到答案.

    【详解】

    解: 在Rt中,

    BC=3,

    连接CD,过点CCEABE

    解得

    CB=CDCEAB

    故选:B

    【点睛】

    此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.

    9、C

    【分析】

    根据轴对称图形与中心对称图形的概念求解.

    【详解】

    A.是轴对称图形,不是中心对称图形,故此选项不合题意;

    B.不是轴对称图形,是中心对称图形,故此选项不符合题意;

    C.是轴对称图形,也是中心对称图形,故此选项合题意;

    D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.

    故选:C.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    10、A

    【分析】

    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.

    【详解】

    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;

    B、C选项,根据圆的定义可以得到;

    D选项,是垂径定理;

    故选:A

    【点睛】

    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.

    二、填空题

    1、

    【分析】

    绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.

    【详解】

    解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是

    故答案为:

    【点睛】

    本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.

    2、

    【分析】

    过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.

    【详解】

    如图所示,是正三角形,故O的中心,

    ∵正三角形的边长为2,OEAB

    由勾股定理得:

    (负值舍去).

    故答案为:

    【点睛】

    本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.

    3、①②④

    【分析】

    连接OM,由切线的性质可得,继而得,再根据平行线的性质以及等边对等角即可求得,由此可判断①;通过证明,根据相似三角形的对应边成比例可判断②;求出,利用弧长公式求得的长可判断③;由,可得,继而可得,进而有,在中,利用勾股定理求出PD的长,可得,由此可判断④.

    【详解】

    解:连接OM

    PE的切线,

    AM平分,故①正确;

    AB的直径,

    ,故②正确;

    的长为,故③错误;

    又∵

    又∵

    ,则

    中,

    由①可得

    故④正确,

    故答案为:①②④.

    【点睛】

    本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

    4、18.84

    【分析】

    先根据弧长公式求得πr,然后再运用圆的周长公式解答即可.

    【详解】

    解:设圆弧所在圆的半径为厘米,

    解得

    则它所在圆的周长为(厘米),

    故答案为:

    【点睛】

    本题主要考查了弧长公式、圆的周长公式等知识点,牢记弧长公式是解答本题的关键.

    5、

    【分析】

    如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM,通过△OCD≌△OBESAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MDBM.再利用勾股定理计算即可.

    【详解】

    解:如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM

    ∵四边形BCDE是正方形,

    ∴∠BCD=∠CBE=90°,CDBCBEDE

    OBOC

    ∴∠OCB=∠OBC

    ∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE

    ∴△OCD≌△OBESAS),

    OEOD

    根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,

    ∵∠MCBMOB×90°=45°,

    ∴∠DCM=∠BCM=45°,

    ∵四边形BCDE是正方形,

    CME共线,∠DEM=∠BEM

    在△EMD和△EMB中,

    ∴△MED≌△MEBSAS),

    DMBM=2(cm),

    OD的最大值=2+2,即OE的最大值=2+2;

    故答案为:(2+2)cm.

    【点睛】

    本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.

    三、解答题

    1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.

    【分析】

    先画出点AB关于点C中心对称的点A',B',再连接A',B',C即可解题.

    【详解】

    解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.

    【点睛】

    本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.

    2、(1)见解析;(2)CD=EF=1.

    【分析】

    (1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.

    (2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在RtCDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.

    【详解】

    (1)解:连结OC

    ∴∠1=∠B

    ∠2=∠C

    OB =OC

    ∴∠B=∠C

    ∴∠1=∠2

    ∴弧AD=弧CD

    (2)∵AB的直径

    ∴∠ACB=90°

    ∴∠AEO=∠ACB=90°

    RtABC中,∠ACB=90°,

    BC=6,AB=10

    AC=8

    ∵半径ODAC于E

    EC=AE=4

      OE=

    ED=2 

    由勾股定理得,CD=

    ∴△EDF∽△CBF

    EF=x,则FC=4-x

    EF=1,经检验符合题意.

    【点睛】

    本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.

    3、(1);(2)①见解析;②AE=AF+CE,证明见解析.

    【分析】

    (1)根据“线段DA的延长线与线段BC相交于点E”可求解;

    (2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证CHE=∠HCE,即可得出结果.

    【详解】

    (1)如图:AD只能在锐角∠EAF内旋转符合题意

    α的取值范围为:

    (2)补全图形如下:

    (3)AE=AF+CE

    证明:在AE上截取AH=AF,由旋转可得:AB=AD

    ∴∠D=∠ABF

    ∵△ABC为等边三角形,

    AB=AC,∠BAC=ACB=60°,

    AD=AC

    ∵∠DAF=∠CAH

    ∴△AFD≌△AHC

    ∴∠AFD=∠AHC,∠D=∠ACH

    ∴∠AFB=∠CHE

    ∵∠AFB+∠ABF=∠ACH+∠HCE=60°,

    ∴∠CHE+∠D=∠D+∠HCE=60°,

    ∴∠CHE=∠HCE

    CE=HE

    AE=AH+HE=AF+CE

    【点睛】

    本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.

    4、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).

    【分析】

    (1)3=OC=OA=3OB,故点ABC的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;

    (3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.

    【详解】

    解:(1)令x=0,则y=3,

    则点A的坐标为(3,0),

    根据题意得:OC=3=OA=3OB

    故点BC的坐标分别为:(-1,0)、(3,0),

    则抛物线的表达式为:y=ax+1)(x-3)=ax2-2x-3),

    把(3,0)代入得-3a=3,

    解得:a=-1,

    故抛物线的表达式为:y=-x2+2x+3;

    (2)圆的圆心在BC的中垂线上,故设圆心R(1,m),

    RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),

    则圆的半径为:

    (3)过点AC分别作直线AC的垂线,交抛物线分别为PP1

    设点P(x,-x2+2x+3),过点PPQ轴于点Q

    OA =OC,∠PAC=90°,

    ∴∠ACO=∠OAC=45°,

    ∵∠PAC=90°,

    ∴∠PAQ=45°,

    ∴△PAQ 是等腰直角三角形,

    PQ=AQ=x

    AQ+AO=x+3=-x2+2x+3,

    解得:(舍去),

    ∴点P(1,4);

    设点P1(m,-m2+2m+3),过点P1P1D轴于点D

    同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,

    P1D=CD=m2-2m-3,DO=-m

    DO+OC= P1D,即-m+3= m2-2m-3,

    解得:(舍去),

    ∴点P(-2,-5);

    综上,点P(1,4)或(-2,-5).

    【点睛】

    本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.

    5、

    (1)证明见解析

    (2)

    【分析】

    (1)连接OA,根据已知条件证明OAAE即可解决问题;

    (2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.

    (1)

    证明:如图,连接OA

    AECD

    ∴∠DAE+∠ADE=90°.

    DA平分∠BDE

    ∴∠ADE=∠ADO

    又∵OA=OD

    ∴∠OAD=∠ADO

    ∴∠DAE+∠OAD=90°,

    OAAE

    AE是⊙O切线;

    (2)

    解:如图,取CD中点F,连接OF

    OFCD于点F

    ∴四边形AEFO是矩形,

    CD=6,

    DF=FC=3.

    RtOFD中,OF=AE=4,

    RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,

    AD的长是

    【点睛】

    本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.

     

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试综合训练题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共29页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    数学沪科版第24章 圆综合与测试课后练习题: 这是一份数学沪科版第24章 圆综合与测试课后练习题,共40页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题: 这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共27页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map