年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合练习试卷(无超纲带解析)

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合练习试卷(无超纲带解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合练习试卷(无超纲带解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆综合练习试卷(无超纲带解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学沪科版第24章 圆综合与测试综合训练题

    展开

    这是一份数学沪科版第24章 圆综合与测试综合训练题,共28页。试卷主要包含了下列判断正确的个数有,将一把直尺等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是(    A.  B. C.  D.2、下列图案中既是轴对称图形,又是中心对称图形的是(    A.  B.C. D.3、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(    A. B.C. D.4、如图,在Rt△ABC中,,以边上一点为圆心作,恰与边分别相切于点,则阴影部分的面积为(    A. B. C. D.5、下列判断正确的个数有(    ①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个6、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是(    A. B. C. D.7、如图,PA的切线,切点为APO的延长线交于点B,若,则的度数为(    ).A.20° B.25° C.30° D.40°8、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.109、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是(    A.6 B. C.3 D.10、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为(    )cm.A.3π B.6π C.12π D.18π第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 2、在平面直角坐标系中,点关于原点对称的点的坐标是______.3、一个正多边形的中心角是,则这个正多边形的边数为________.4、如图,在中,,分别以边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当时,则阴影部分的面积为__________.5、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,,点分别在边上,,连接.点在线段上,连接于点(1)①比较的大小,并证明;②若,求证:(2)将图1中的绕点逆时针旋转,如图2.若的中点,判断是否仍然成立.如果成立,请证明;如果不成立,请说明理由.2、在等边中,将线段AB绕点A顺时针旋转得到线段AD(1)若线段DA的延长线与线段BC相交于点E(不与点BC重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F①依题意补全图形;②用等式表示线段AEAFCE之间的数量关系,并证明.3、在平面内,给定不在同一直线上的点ABC,如图所示.点O到点ABC的距离均等于rr为常数),到点O的距离等于r的所有点组成图形GABC的平分线交图形G于点D,连接ADCD.求证:AD=CD.4、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1C1的坐标;(2)求线段AB在旋转过程中扫过的面积.5、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接CD,若CDBD,且AC=6.求劣弧的长. -参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.不是轴对称图形,是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.3、A【分析】设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当上时, 上时,延长交于点 同理: 为等边三角形, 上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.4、A【分析】连结OC,根据切线长性质DC=ACOC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可.【详解】解:连结OC∵以边上一点为圆心作,恰与边分别相切于点A, DC=ACOC平分∠ACD∴∠ACD=90°-∠B=60°,∴∠OCD=∠OCA==30°,在Rt△ABC中,AC=ABtanB=3×在Rt△AOC中,∠ACO=30°,AO=ACtan30°=OD=OA=1,DC=AC=∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,S阴影=故选择A.【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.5、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.6、C【分析】如图,过点CCTAB于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点CCTAB 于点T,过点OOHAB于点H,交⊙O于点K,连接AOAK由题意可得AB垂直平分线段OKAO=AKOH=HK=3,OA=OKOA=OK=AK∴∠OAK=∠AOK=60°,AH=OA×sin60°=6×=3OHABAH=BHAB=2AH=6OC+OHCTCT⩽6+3=9,CT的最大值为9,∴△ABC的面积的最大值为=27故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.7、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,PA是⊙O的切线,OAAP∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,OA=OB∴∠B=∠OAB∵∠AOP=∠B+∠OAB∴∠B=∠AOP=×50°=25°.故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.9、D【分析】如图所示,设圆的圆心为O,连接OCOB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明RtOCARtOBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OCOBACAB都是圆O的切线,∴∠OCA=∠OBA=90°,OC=OB又∵OA=OARtOCARtOBAHL),∴∠OAC=∠OAB∵∠DAC=60°,∴∠AOB=30°,OA=2AB=6,∴圆O的直径为故选D.【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.10、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:它的侧面展开图的面积=×2×2×3=6(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、6【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.2、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.3、九9【分析】根据正多边形的每个中心角相等,且所有中心角的度数和为360°进行求解即可.【详解】解:设这个正多边形的边数为n∵这个正多边形的中心角是40°,∴这个正多边形是九边形,故答案为:九.【点睛】本题主要考查了正多边形的性质,熟知正多边形中心角的度数和为360度是解题的关键.4、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即【详解】解:中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.5、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=r=2,∴扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=三、解答题1、(1)①∠CAE=∠CBD,理由见解析;②证明见解析;(2)AE=2CF仍然成立,理由见解析【分析】(1)①只需要证明△CAE≌△CBD即可得到∠CAE=∠CBD②先证明∠CAH=∠BCF,然后推出∠BDC=∠FCD,∠CAE=∠CBD=∠BCF,得到CF=DFCF=BF,则BD=2CF,再由△CAE≌△CBD,即可得到AE=2BD=2CF(2)如图所示延长DCG使得,DC=CG,连接BG,只需要证明△ACE≌△BCG得到AE=BG,再由CF是△BDG的中位线,得到BG=2CF,即可证明AE=2CF【详解】解:(1)①∠CAE=∠CBD,理由如下:在△CAE和△    CBD中,∴△CAE≌△CBDSAS),∴∠CAE=∠CBD②∵CFAE∴∠AHC=∠ACB=90°,∴∠CAH+∠ACH=∠ACH+∠BCF=90°,∴∠CAH=∠BCF∵∠DCF+∠BCF=90°,∠CDB+∠CBD=90°,∠CAE=∠CBD∴∠BDC=∠FCD,∠CAE=∠CBD=∠BCFCF=DFCF=BFBD=2CF又∵△CAE≌△CBDAE=2BD=2CF(2)AE=2CF仍然成立,理由如下:如图所示延长DCG使得,DC=CG,连接BG由旋转的性质可得,∠DCE=∠ACB=90°,∴∠ACD+∠BCD=∠BCE+∠BCD,∠ECG=90°,∴∠ACD=∠BCE∴∠ACD+∠DCE=∠BCE+∠ECG,即∠ACE=∠BCG又∵CE=CD=CGAC=BC∴△ACE≌△BCGSAS),AE=BGFBD的中点,CD=CGCF是△BDG的中位线,BG=2CFAE=2CF【点睛】本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,旋转的性质,三角形中位线定理,熟知全等三角形的性质与判定条件是解题的关键.2、(1);(2)①见解析;②AE=AF+CE,证明见解析.【分析】(1)根据“线段DA的延长线与线段BC相交于点E”可求解;(2)①根据要求画出图形,即可得出结论;②在AE上截取AH=AF,先证△AFD≌△AHC,再证∠CHE=∠HCE,即可得出结果.【详解】(1)如图:AD只能在锐角∠EAF内旋转符合题意α的取值范围为:(2)补全图形如下:(3)AE=AF+CE证明:在AE上截取AH=AF,由旋转可得:AB=AD∴∠D=∠ABF∵△ABC为等边三角形,AB=AC,∠BAC=ACB=60°,AD=AC∵∠DAF=∠CAH∴△AFD≌△AHC∴∠AFD=∠AHC,∠D=∠ACH∴∠AFB=∠CHE∵∠AFB+∠ABF=∠ACH+∠HCE=60°,∴∠CHE+∠D=∠D+∠HCE=60°,∴∠CHE=∠HCECE=HEAE=AH+HE=AF+CE【点睛】本题考查了旋转的性质,三角形外角的性质,等边三角形性质及应用,解题的关键是正确画出图形和作出辅助线.3、见解析【分析】由题意画图,再根据圆周角定理的推论即可得证结论.【详解】证明:根据题意作图如下:BD是圆周角ABC的角平分线,∴∠ABD=∠CBDAD=CD【点睛】本题考查了角,弧,弦之间的关系,熟练掌握三者的关系定理是解题的关键.4、(1)作图见解析,;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:(2)由图可知:∴线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.5、(1)作图见解析;(2)【分析】(1)由于D点为⊙O的切点,即可得到OC=OD,且ODAB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CDOD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.【详解】解:(1)如图所示,先作∠A的角平分线,交BCO点,以O为圆心,OC为半径画出⊙O即为所求;(2)如图所示,连接CDOD由题意,AD为⊙O的切线,OCAC,且OC为半径,AC为⊙O的切线,AC=AD∴∠ACD=∠ADCCD=BD∴∠B=∠DCB∵∠ADC=∠B+∠BCD∴∠ACD=∠ADC=2∠DCB∵∠ACB=90°,∴∠ACD+∠DCB=90°,即:3∠DCB=90°,∴∠DCB=30°,OC=OD∴∠DCB=∠ODC=30°,∴∠COD=180°-2×30°=120°,∵∠DCB=∠B=30°,∴在RtABC中,∠BAC=60°,AO平分∠BAC∴∠CAO=∠DAO=30°,∴在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键. 

    相关试卷

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共41页。

    初中数学第24章 圆综合与测试同步练习题:

    这是一份初中数学第24章 圆综合与测试同步练习题,共25页。试卷主要包含了已知⊙O的半径为4,,则点A在,下列叙述正确的有个.等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map