九年级下册第24章 圆综合与测试课后作业题
展开
这是一份九年级下册第24章 圆综合与测试课后作业题,共29页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.
C.D.
2、如图,在Rt△ABC中,,,,以边上一点为圆心作,恰与边,分别相切于点,,则阴影部分的面积为( )
A.B.C.D.
3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )
A.不变B.面积扩大为原来的3倍
C.面积扩大为原来的9倍D.面积缩小为原来的
4、下列各点中,关于原点对称的两个点是( )
A.(﹣5,0)与(0,5)B.(0,2)与(2,0)
C.(﹣2,﹣1)与(﹣2,1)D.(2,﹣1)与(﹣2,1)
5、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A.B.C.D.
6、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )
A.10B.2C.2D.4
7、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
A.直径所对圆周角为B.如果点在圆上,那么点到圆心的距离等于半径
C.直径是最长的弦D.垂直于弦的直径平分这条弦
8、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A.B.C.D.
9、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )
A.30°B.60°
C.90°D.120°
10、下列语句判断正确的是( )
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点关于原点对称的点的坐标是______.
2、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.
3、在平面直角坐标系中,将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是___________.
4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.
5、如图,是由绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且的度数为100°,则的度数是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,△ABC为锐角三角形,AB=AC
求作:一点P,使得∠APC=∠BAC
作法:①以点A为圆心, AB长为半径画圆;
②以点B为圆心,BC长为半径画弧,交⊙A于点C,D两点;
③连接DA并延长交⊙A于点P
点P即为所求
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明
证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠_________=∠_________
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(______________________) (填推理的依据)
∴∠APC=∠BAC
2、如图,四边形是的内接四边形,,,.
(1)求的度数.
(2)求的度数.
3、如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,半径OD弦BC.
(1)求证:弧AD=弧CD;
(2)连接AC、BD相交于点F,AC与OD相交于点E,连接CD,若⊙O的半径为5,BC=6,求CD和EF的长.
4、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.
(1)依题意补全图形;
(2)求的度数;
(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.
5、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).
-参考答案-
一、单选题
1、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
2、A
【分析】
连结OC,根据切线长性质DC=AC,OC平分∠ACD,求出∠OCD=∠OCA==30°,利用在Rt△ABC中,AC=ABtanB=3×,在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,利用三角形面积公式求出,,再求出扇形面积,利用割补法求即可.
【详解】
解:连结OC,
∵以边上一点为圆心作,恰与边,分别相切于点A, ,
∴DC=AC,OC平分∠ACD,
∵,,
∴∠ACD=90°-∠B=60°,
∴∠OCD=∠OCA==30°,
在Rt△ABC中,AC=ABtanB=3×,
在Rt△AOC中,∠ACO=30°,AO=ACtan30°=,
∴OD=OA=1,DC=AC=,
∴,,
∵∠DOC=360°-∠OAC-∠ACD-∠ODC=360°-90°-90°-60°=120°,
∴,
S阴影=.
故选择A.
【点睛】
本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.
3、A
【分析】
设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案.
【详解】
设原来扇形的半径为r,圆心角为n,
∴原来扇形的面积为,
∵扇形的半径扩大为原来的3倍,圆心角缩小为原来的,
∴变化后的扇形的半径为3r,圆心角为,
∴变化后的扇形的面积为,
∴扇形的面积不变.
故选:A.
【点睛】
本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键.
4、D
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
故选:D.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
5、D
【分析】
连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.
【详解】
解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
【点睛】
本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.
6、D
【分析】
首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
【详解】
解:∵在Rt△ABC中,AB=6,BC=8,
∴,
由旋转性质可知,AB= AB'=6,BC= B'C'=8,
∴B'C=10-6=4,
在Rt△B'C'C中,,
故选:D.
【点睛】
本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
7、A
【分析】
定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
【详解】
A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
B、C选项,根据圆的定义可以得到;
D选项,是垂径定理;
故选:A
【点睛】
本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
8、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
9、B
【分析】
由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
【详解】
解:因为每次旋转相同角度,旋转了六次,
且旋转了六次刚好旋转了一周为360°,
所以每次旋转相同角度 .
故选:B.
【点睛】
本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
10、A
【分析】
根据等边三角形的对称性判断即可.
【详解】
∵等边三角形是轴对称图形,但不是中心对称图形,
∴B,C,D都不符合题意;
故选:A.
【点睛】
本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
二、填空题
1、(3,4)
【分析】
关于原点对称的点,横坐标与纵坐标都互为相反数.
【详解】
:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),
故答案为:(3,4).
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
2、12
【分析】
如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
【详解】
解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,
∴当MN的值最小时,△PEF的值最小,
∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
∴∠MAN=120°,
∴MN=AM=PA,
∴当PA的值最小时,MN的值最小,
取AB的中点J,连接CJ.
∵AB=8,AC=4,
∴AJ=JB=AC=4,
∵∠JAC=60°,
∴△JAC是等边三角形,
∴JC=JA=JB,
∴∠ACB=90°,
∴BC=,
∵∠BOC=60°,OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=4,∠BCO=60°,
∴∠ACH=30°,
∵AH⊥OH,
AH=AC=2,CH=AH=2,
∴OH=6,
∴OA==4,
∵当点P在直线OA上时,PA的值最小,最小值为-,
∴MN的最小值为•(-)=-12.
故答案:-12.
【点睛】
本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
3、
【分析】
绕坐标原点顺时针旋转即关于原点中心对称,找到关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:将点绕坐标原点顺时针旋转后得到点Q,则点Q的坐标是
故答案为:
【点睛】
本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.
4、1+
【分析】
过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,
得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.
【详解】
解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,
∵点A(3,0)
∴AD=x-3,
∵为等腰直角三角形,
∴AB=AC,∠BAC=90°,
∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,
∵CD⊥x轴, BE⊥x轴,
∴∠BEA=∠ADC=90°,
∴∠ACD+∠CAD=90°,
∴∠ACD=∠BAE,
在△BAE和△ACD中,
,
∴△BAE≌△ACD(AAS),
∴BE=AD=x-3,EA=DC,
在Rt△EBO中,OB=1,BE= x-3,
根据勾股定理,
∴EA=OE+OA=,
∴CD=AE=,
∴CO=,
当OD=CD时OC最大,OC=,此时,
∴,
∴,
∴,
∴,(舍去),
∴线段OC长度的最大值为.
故答案为:1+.
【点睛】
本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.
5、35°
【分析】
根据旋转的性质可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
【详解】
解:∵△COD是△AOB绕点O顺时针旋转30°后得到的图形,
∴∠AOD=∠BOC=30°,AO=DO,
∵∠AOC=100°,
∴∠BOD=100°−30°×2=40°,
∠ADO=∠A=(180°−∠AOD)=(180°−30°)=75°,
由三角形的外角性质得,∠B=∠ADO−∠BOD=75°−40°=35°.
故答案为:35°.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
三、解答题
1、(1)见解析;(2)BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【分析】
(1)根据按步骤作图即可;
(2)根据圆周角定理进行证明即可
【详解】
解:(1)如图所示,
(2)证明:连接PC,BD
∵AB=AC,
∴点C在⊙A上
∵BC=BD,
∴∠BAC=∠BAD
∴∠BAC=∠CAD
∵点D,P在⊙A上,
∴∠CPD=∠CAD(圆周角定理) (填推理的依据)
∴∠APC=∠BAC
故答案为:BAC=BAD,圆周角定理或同弧所对的圆周角等于它所对圆心角的一半
【点睛】
本题考查了尺规作图作圆,圆周角定理,掌握圆周角定理是解题的关键.
2、(1)70°;(2)103°
【分析】
(1)根据等弧所对的圆周角相等可得,得出,在三角形中利用三角形内角和定理求解即可得;
(2)由圆周角定理可得,结合(1)中结论及图形可得:,代入求解即可.
【详解】
解:(1),
,,
在中,
.
(2)由圆周角定理,得.
.
【点睛】
题目主要考查圆周角定理,三角形内角和定理,熟练掌握运用圆周角定理是解题关键.
3、(1)见解析;(2)CD=,EF=1.
【分析】
(1)连接OC,根据圆的性质,得到OB=OC;根据等腰三角形的性质,得到;根据平行线的性质,得到;在同圆和等圆中,根据相等的圆心解所对的弧等即得证.
(2)根据直径所对的圆周角是直角求出∠ACB=90°,根据平行线的性质求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根据垂径定理求得EC=AE=4,根据中位线定理求出OE,在Rt△CDE中,根据勾股定理求出CD,因为,所以△EDF∽△BCF,最后根据似的性质,列方程求解即可.
【详解】
(1)解:连结OC.
∵
∴∠1=∠B
∠2=∠C
∵OB =OC
∴∠B=∠C
∴∠1=∠2
∴弧AD=弧CD
(2)∵AB是的直径
∴∠ACB=90°
∵
∴∠AEO=∠ACB=90°
Rt△ABC中,∠ACB=90°,
∵BC=6,AB=10
∴AC=8
∵半径OD⊥AC于E
∴EC=AE=4
OE=
∴ED=2
由勾股定理得,CD=
∵
∴△EDF∽△CBF
∴
设EF=x,则FC=4-x
∴EF=1,经检验符合题意.
【点睛】
本题考查了圆的综合题,圆的有关性质:圆的半径相等;同圆或等圆中,相等的圆心角所对的弧等;直径所对的圆周角是直角;垂径定理;平行线的性质,勾股定理,三角形中位线定理,三角形相似的判定和性质等知识,正确理解圆的相关性质是解题的关键.
4、
(1)见解析;
(2)
(3)
【分析】
(1)根据题意补全图形即可;
(2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;
(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到
(1)
如图,
(2)
将线段AE绕点A逆时针旋转90°,得到线段AF,
,
,
又
即
(3)
证明如下,如图,过点作,
又,
又
,
即
【点睛】
本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.
5、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.
【分析】
先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.
【详解】
解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.
【点睛】
本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。
这是一份数学九年级下册第24章 圆综合与测试课后作业题,共28页。
这是一份初中沪科版第24章 圆综合与测试习题,共37页。试卷主要包含了下列图形中,是中心对称图形的是,在圆内接四边形ABCD中,∠A,已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。