初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试当堂检测题,共33页。
沪科版九年级数学下册第24章圆专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
2、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
3、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )
A.1 B.2 C.3 D.4
4、如图,AB是⊙O的直径,弦,,,则阴影部分图形的面积为( )
A. B. C. D.
5、平面直角坐标系中点关于原点对称的点的坐标是( )
A. B. C. D.
6、下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B. C. D.
7、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )
A.它们的开口方向相同 B.它们的对称轴相同
C.它们的变化情況相同 D.它们的顶点坐标相同
8、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )
A.30° B.60°
C.90° D.120°
9、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是( ).
A.90° B.100° C.120° D.150°
10、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.
2、如图,在平面直角坐标系中,一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B,将直线AB绕点B顺时针旋转45°,交x轴于点C,则直线BC的函数表达式为_______.
3、在平面直角坐标系中,A(-1,0),B(2,0),∠OCB=30°,D为线段BC的中点,线段AD交线段OC于点E,则△AOE面积的最大值为___________
4、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.
5、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AB为⊙O的切线,B为切点,过点B作BC⊥OA,垂足为点E,交⊙O于点C,连接CO并延长CO与AB的延长线交于点D,连接AC.
(1)求证:AC为⊙O的切线;
(2)若⊙O半径为2,OD=4.求线段AD的长.
2、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OM、OP在直线AB上,其中.
(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP在的内部且平分,此时三角板OPQ旋转的角度为______度;
(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP在的内部.试探究与之间满足什么等量关系,并说明理由;
(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OC、OD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OC与OD第二次相遇前,当时,直接写出旋转时间t的值.
3、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
4、如图,已知为的直径,切于点C,交的延长线于点D,且.
(1)求的大小;
(2)若,求的长.
5、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.
(1)求证:直线CD是⊙O的切线;
(2)若,,求OC的长.
-参考答案-
一、单选题
1、B
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
2、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
3、B
【分析】
由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.
【详解】
由题意以及旋转的性质知AD=AB,∠BAD=60°
∴∠ADB=∠ABD
∵∠ADB+∠ABD+∠BAD=180°
∴∠ADB=∠ABD=60°
故为等边三角形,即AB= AD =BD=2
则CD=BC-BD=4-2=2
故选:B.
【点睛】
本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.
4、D
【分析】
根据垂径定理求得CE=ED=;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC,然后证明△OCE≌△BDE,得到求出扇形COB面积,即可得出答案.
【详解】
解:设AB与CD交于点E,
∵AB是⊙O的直径,弦CD⊥AB,CD=2,如图,
∴CE=CD=,∠CEO=∠DEB=90°,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∴∠OCE=30°,
∴,
∴,
又∵,即
∴,
在△OCE和△BDE中,
,
∴△OCE≌△BDE(AAS),
∴
∴阴影部分的面积S=S扇形COB=,
故选D.
【点睛】
本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键.
5、B
【分析】
根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.
【详解】
解:平面直角坐标系中点关于原点对称的点的坐标是
故选B
【点睛】
本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.
6、B
【分析】
根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.
【详解】
解:A、既不是轴对称图形也不是中心对称图形,故不符合题意;
B、是中心对称图形但不是轴对称图形,故符合题意;
C、既不是轴对称图形也不是中心对称图形,故不符合题意;
D、是轴对称图形但不是中心对称图形,故不符合题意;
故选B.
【点睛】
本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.
7、B
【分析】
根据旋转的性质及抛物线的性质即可确定答案.
【详解】
抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.
故选:B
【点睛】
本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.
8、B
【分析】
由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
【详解】
解:因为每次旋转相同角度,旋转了六次,
且旋转了六次刚好旋转了一周为360°,
所以每次旋转相同角度 .
故选:B.
【点睛】
本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
9、D
【分析】
将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.
【详解】
解:为等边三角形,
,
可将绕点逆时针旋转得,
如图,连接,
,,,
为等边三角形,
,,
在中,,,,
,
为直角三角形,且,
.
故选:D.
【点睛】
本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.
10、B
【分析】
根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系
【详解】
解:连接,
,点O为AB中点.
CO为⊙C的半径,
是的切线,
⊙C 与AB的位置关系是相切
故选B
【点睛】
本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.
二、填空题
1、 4
【分析】
设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.
【详解】
解:设一直角边长为x,另一直角边长为(6-x),
∵三角形是直角三角形,
∴根据勾股定理,
整理得:,
解得,
这个直角三角形的斜边长为外接圆的直径,
∴外接圆的半径为cm,
三角形面积为.
故答案为;.
【点睛】
本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.
2、##
【分析】
先求出点A、B的坐标,过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F的坐标,再利用待定系数法,即可求出答案.
【详解】
解:∵一次函数y=-2x+4的图像与x轴、y轴分别交于点A、B两点,
∴令,则;令,则,
∴点A为(2,0),点B为(0,4),
∴,;
过点A作AF⊥AB,交直线BC于点F,过点F作EF⊥x轴,垂足为E,如图,
∴,
∴,
∴,
∵,
∴△ABF是等腰直角三角形,
∴AF=AB,
∴△ABO≌△FAE(AAS),
∴AO=FE,BO=AE,
∴,,
∴,
∴点F的坐标为(,);
设直线BC为,则
,解得:,
∴直线BC的函数表达式为;
故答案为:;
【点睛】
本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
3、
【分析】
过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则△AOE的边上的高,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可.
【详解】
解:过点作轴,交于点,
∵A(-1,0),B(2,0),
∴,,
∵D为线段BC的中点,轴,
∴,
∴,
设点到轴的距离为,
则△AOE的边上的高,
作的外接圆,
则当点位于图中处时,最大,
因为,
∴,
∴为等边三角形,
∴,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】
本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键.
4、-2
【分析】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
【详解】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
∵直线AB的解析式为
当x=0时,y=5,当y=0时,x=5
∴B(0,5),A(5,0)
∴AO=BO,△AOB是等腰直角三角形
∴∠BAO=90°
当CN⊥AB时,则△ACN是等腰直角三角形
∴CN=AN
∵C
∴AC=7
∵AC2=CN2+AN2=2CN2
∴CN=
当 C、M、N三点共线时,长度最小
即MN=CN-CM=-2
故答案为:-2.
【点睛】
此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
5、
【分析】
如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
【详解】
解:如图,
∵四边形CDEF为正方形,
∴∠D=90°,CD=DE,
∴CE是直径,∠ECD=45°,
根据题意得:AB=2.5, ,
∴ ,
∴ ,
即此斛底面的正方形的边长为 尺.
故答案为:
【点睛】
本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
三、解答题
1、(1)见解析;(2)4
【分析】
(1)连接OB,证明△AOB≌△AOC(SSS),可得∠ACO=∠ABO=90°,即可证明AC为⊙O的切线;
(2)在Rt△BOD中,勾股定理求得BD,根据sinD==,代入数值即可求得答案
【详解】
解:(1)连接OB,
∵AB是⊙O的切线,
∴OB⊥AB,
即∠ABO=90°,
∵BC是弦,OA⊥BC,
∴CE=BE,
∴AC=AB,
在△AOB和△AOC中,
,
∴△AOB≌△AOC(SSS),
∴∠ACO=∠ABO=90°,
即AC⊥OC,
∴AC是⊙O的切线;
(2)在Rt△BOD中,由勾股定理得,
BD==2,
∵sinD==,⊙O半径为2,OD=4.
∴=,
解得AC=2,
∴AD=BD+AB=4.
【点睛】
本题考查了切线的性质与判定,正弦的定义,三角形全等的性质与判定,勾股定理,掌握切线的性质与判定是解题的关键.
2、
(1)135°
(2)∠MOP-∠NOQ=30°,理由见解析
(3)s或s.
【分析】
(1)先根据OP平分得到∠PON,然后求出∠BOP即可;
(2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;
(3)先求出旋转前OC、OD的夹角,然后再求出OC与OD第一次和第二次相遇所需要的时间,再设在OC与OD第二次相遇前,当时,需要旋转时间为t,再分OE在OC的左侧和OE在OC的右侧两种情况解答即可.
(1)
解:∵OP平分∠MON
∴∠PON=∠MON=45°
∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.
故答案是135°
(2)
解:∠MOP-∠NOQ=30°,理由如下:
∵∠MON=90°,∠POQ=60°
∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,
∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.
(3)
解:∵射线OC平分,射线OD平分
∴∠NOC=45°,∠POD=30°
∴选择前OC与OD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°
∴OC与OD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°
∴此时OC与OE的夹角165-(180-45-2×33)=96°
OC与OD第二次相遇需要时间360°÷(3°+2°)=72秒
设在OC与OD第二次相遇前,当时,需要旋转时间为t
①当OE在OC的左侧时,有(5°-2°)t=96°-13°,解得:t=s
②当OE在OC的右侧时,有(5°-2°)t=96°+13°,解得:t=s
然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象
∵C、D第二次相遇需要时间72秒
∴在OC与OD第二次相遇前,当时,、旋转时间t的值为s或s.
【点睛】
本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.
3、(1);(2);(3)或
【分析】
(1)分别计算出OQ、PO和PQ的长度,比较即可得出答案;
(2)先判断点P在以O为圆心,1为半径的圆外且点P在线段OQ垂直平分线的左侧,结合PO≤2,点P在以O为圆心,2为半径的圆上或圆内,可得点P在如图所示的线段AB上(不包含点B),过作轴,过作轴,垂足分别为 再根据图形的性质求解 从而可得答案;
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,而PO<PQ,点P在线段OQ垂直平分线的左侧,再分两种情况讨论:当时,当时,分别画出两种情况下的临界直线 再根据临界直线经过的特殊点求解的值,再确定范围即可.
【详解】
解:(1) O(0,0),Q(1,0),
P1(0,-1),P2(,),P3(-1,1)
不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以不满足OQ<PO<PQ且PO≤2,
所以不是线段OQ的“潜力点”,
同理:
所以满足:OQ<PO<PQ且PO≤2,
所以是线段OQ的“潜力点”,
故答案为:P3
(2)∵点P为线段OQ的“潜力点”,
∴OQ<PO<PQ且PO≤2,
∵OQ<PO,
∴点P在以O为圆心,1为半径的圆外
∵PO<PQ,
∴点P在线段OQ垂直平分线的左侧,而的垂直平分线为:
∵PO≤2,
∴点P在以O为圆心,2为半径的圆上或圆内
又∵点P在直线y=x上,
∴点P在如图所示的线段AB上(不包含点B)
过作轴,过作轴,垂足分别为
由题意可知△BOC和 △AOD是等腰三角形,
∴
∴-≤xp<-
(3)由(2)得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧
当时,过时,
即函数解析式为:
此时 则
当与半径为2的圆相切于时,则
由
而
当时,如图,同理可得:点P在以O为圆心,1为半径的圆外且点P在以O为圆心,2为半径的圆上或圆内,
而PO<PQ,点P在线段OQ垂直平分线的左侧,
同理:当过 则 直线为
在直线上,
此时
当过时, 则
所以此时:
综上:的范围为:1<b≤或<b<-1
【点睛】
本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.
4、
(1)45°
(2)
【分析】
(1)连接OC,根据切线的性质得到OC⊥CD,根据圆周角定理得到∠DOC=2∠CAD,进而证明∠D=∠DOC,根据等腰直角三角形的性质求出∠D的度数;
(2)根据等腰三角形的性质求出OC,根据弧长公式计算即可.
(1)
连接.
∵ ,
∴ ,即 .
∵ ,
∴ .
∵ 是⊙的切线,
∴ ,即 .
∴ .
∴ .
∴ .
(2)
∵ ,,
∴ .
∵ ,
∴ .
∴ 的长.
【点睛】
本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.
5、(1)见解析;(2)
【分析】
(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;
(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,
从而可得,则可求得OC的长.
【详解】
(1)连接OD,
∵,
∴.
又∵,
∴,
∴.
在与中,
∴,
∴.
又∵,
∴,
∴是的切线.
(2)∵,
∴,
∴,
∴.
又∵,
∴,
∴,
∴,
∴,
∴,
∴OC=15
【点睛】
本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试当堂检测题,共39页。
这是一份初中沪科版第24章 圆综合与测试巩固练习,共31页。试卷主要包含了如图,是的直径,,下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时训练,共27页。