![2021-2022学年度沪科版九年级数学下册第24章圆专项训练试卷(含答案详解)第1页](http://m.enxinlong.com/img-preview/2/3/12682894/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第24章圆专项训练试卷(含答案详解)第2页](http://m.enxinlong.com/img-preview/2/3/12682894/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度沪科版九年级数学下册第24章圆专项训练试卷(含答案详解)第3页](http://m.enxinlong.com/img-preview/2/3/12682894/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪科版九年级下册第24章 圆综合与测试当堂达标检测题
展开
这是一份沪科版九年级下册第24章 圆综合与测试当堂达标检测题,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )
A.25° B.80° C.130° D.100°
2、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′AB,则旋转角的度数为( )
A.64° B.52° C.42° D.36°
3、已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系是( )
A.相离 B.相切 C.相交 D.相交或相切
4、下列图形中,可以看作是中心对称图形的是( )
A. B.
C. D.
5、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点、、为顶点的三角形的面积是,则下列图像能大致反映与的函数关系的是( )
A. B.
C. D.
6、下列语句判断正确的是( )
A.等边三角形是轴对称图形,但不是中心对称图形
B.等边三角形既是轴对称图形,又是中心对称图形
C.等边三角形是中心对称图形,但不是轴对称图形
D.等边三角形既不是轴对称图形,也不是中心对称图形
7、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )
A.50° B.70° C.110° D.120°
8、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )
A.10 B.2 C.2 D.4
9、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
10、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )
A.105° B.120° C.135° D.150°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,.绕点B顺时针方向旋转45°得到,点A经过的路径为弧,点C经过的路径为弧,则图中阴影部分的面积为______.(结果保留)
2、如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC,若弦BC的长度为,则∠BAC=________度.
3、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.
4、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.
5、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)
三、解答题(5小题,每小题10分,共计50分)
1、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.
小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.
作法:如图,
①延长交于点,延长交于点;
②分别连接,并延长相交于点;
③连接并延长交于点.
所以线段即为中边上的高.
(1)根据小芸的作法,补全图形;
(2)完成下面的证明.
证明:∵是的直径,点,在上,
∴________°.(______)(填推理的依据)
∴,.
∴,________是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
2、如图,在平面直角坐标系中,有抛物线,已知OA =OC =3OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)求过A,B,C三点的圆的半径;
(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标,若不存在,说明理由;
3、在平面直角坐标系xOy中,对于点P,O,Q给出如下定义:若OQ<PO<PQ且PO≤2,我们称点P是线段OQ的“潜力点”
已知点O(0,0),Q(1,0)
(1)在P1(0,-1),P2(,),P3(-1,1)中是线段OQ的“潜力点”是_____________;
(2)若点P在直线y=x上,且为线段OQ的“潜力点”,求点P横坐标的取值范围;
(3)直线y=2x+b与x轴交于点M,与y轴交于点N,当线段MN上存在线段OQ 的“潜力点”时,直接写出b的取值范围
4、如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.
(1)判断△ABC的形状,并证明你的结论;
(2)求证:PA+PB=PC.
5、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.
(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;
(2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;
(3)在旋转过程中,是否存在某个时刻,使得射线 OA、OC、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.
-参考答案-
一、单选题
1、D
【分析】
根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠B+∠ADC=180°,
∵∠ADC=130°,
∴∠B=50°,
由圆周角定理得,∠AOC=2∠B=100°,
故选:D.
【点睛】
本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
2、B
【分析】
先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠AC′C=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.
【详解】
解:∵CC′∥AB,
∴∠ACC′=∠CAB=64°
∵△ABC在平面内绕点A旋转到△AB′C′的位置,
∴∠CAC′等于旋转角,AC=AC′,
∴∠ACC′=∠AC′C=64°,
∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,
∴旋转角为52°.
故选:B.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
3、B
【分析】
圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理直接作答即可.
【详解】
解: ⊙O的直径为10cm,圆心O到直线l的距离为5cm,
⊙O的半径等于圆心O到直线l的距离,
直线l与⊙O的位置关系为相切,
故选B
【点睛】
本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.
4、C
【分析】
根据中心对称图形的定义进行逐一判断即可.
【详解】
解:A、不是中心对称图形,故此选项不符合题意;
B、不是中心对称图形,故此选项不符合题意;
C、是中心对称图形,故此选项符合题意;
D、不是中心对称图形,故此选项不符合题意;
故选C.
【点睛】
本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
5、A
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
6、A
【分析】
根据等边三角形的对称性判断即可.
【详解】
∵等边三角形是轴对称图形,但不是中心对称图形,
∴B,C,D都不符合题意;
故选:A.
【点睛】
本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.
7、B
【分析】
根据旋转可得,,得.
【详解】
解:,,
,
将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
,,
.
故选:B.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
8、D
【分析】
首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
【详解】
解:∵在Rt△ABC中,AB=6,BC=8,
∴,
由旋转性质可知,AB= AB'=6,BC= B'C'=8,
∴B'C=10-6=4,
在Rt△B'C'C中,,
故选:D.
【点睛】
本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
9、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
10、B
【分析】
由题意易得,然后根据三角形外角的性质可求解.
【详解】
解:由旋转的性质可得:,
∴;
故选B.
【点睛】
本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.
二、填空题
1、##
【分析】
设与AC相交于点D,过点D作,垂足为点E,根据勾股定理逆定理可得为直角三角形,根据三边关系可得,根据题意及等角对等边得出,在中,利用正弦函数可得,结合图形,利用扇形面积公式及三角形面积公式求解即可得.
【详解】
解:设与AC相交于点D,过点D作,垂足为点E,
∵,,,
∴,
∴为直角三角形,
∴,
∵绕点B顺时针方向旋转45°得到,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
,
,
,
,
故答案为:.
【点睛】
题目主要考查勾股定理逆定理,旋转的性质,等角对等边的性质,正切函数,扇形面积等,理解题意,结合图形,综合运用这些知识点是解题关键.
2、60
【分析】
在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.
【详解】
解:如图作OE⊥BC于E.
∵OE⊥BC,
∴BE=EC=,∠BOE=∠COE,
∴OE=1,
∴OB=2OE,
∴∠OBE=30°,
∴∠BOE=∠COE=60°,
∴∠BOC=120°,
∴∠BAC=60°,
故答案为:60.
【点睛】
本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
3、
【分析】
如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.
【详解】
解:如图,作BH⊥x轴于H.
∵C(0,4),K(2,0),
∴OC=4,OK=2,
∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,
∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,
∴∠ACO=∠BAH,
∴△ACO≌△BAH(AAS),
∴BH=OA=m,AH=OC=4,
∴B(m+4,m),
令x=m+4,y=m,
∴y=x﹣4,
∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,
则
作KM⊥EF于M,过作于 则
根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),
故答案为:(3,﹣1)
【点睛】
本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.
4、
【分析】
由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.
【详解】
解:与是等腰直角三角形,
,
,
在与中,
,
≌,
,
,
,
在以为直径的圆上,
的外心为,,
,
如图,当时,的值最小,
,
,
,,
.
则的最小值是,
故答案为:.
【点睛】
本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
5、
【分析】
过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.
【详解】
解:过点C作于点H,
在平行四边形中,
平行四边形的面积为:,
图中黑色阴影部分的面积为:
,
故答案为:.
【点睛】
本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.
三、解答题
1、(1)见详解;(2)90,直径所对的圆周角是直角,BD.
【分析】
(1)根据作图步骤作出图形即可;
(2)根据题意填空,即可求解.
【详解】
解:(1)如图,CH为△ABC中AB边上的高;
(2)证明:∵是的直径,点,在上,
∴___90_°.(__直径所对的圆周角是直角_)(填推理的依据)
∴,.
∴,_BD__是的两条高线.
∵,所在直线交于点,
∴直线也是的高所在直线.
∴是中边上的高.
故答案为:90,直径所对的圆周角是直角,BD.
【点睛】
本题考查了圆周角定理的推理,三角形的三条高线相交于一点等知识,熟知两个定理,并根据题意灵活应用是解题关键.
2、(1)y=-x2+2x+3;(2);(3)点P(1,4)或(-2,-5).
【分析】
(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;
(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;
(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.
【详解】
解:(1)令x=0,则y=3,
则点A的坐标为(3,0),
根据题意得:OC=3=OA=3OB,
故点B、C的坐标分别为:(-1,0)、(3,0),
则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),
把(3,0)代入得-3a=3,
解得:a=-1,
故抛物线的表达式为:y=-x2+2x+3;
(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),
则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),
则圆的半径为:;
(3)过点A、C分别作直线AC的垂线,交抛物线分别为P、P1,
设点P(x,-x2+2x+3),过点P作PQ⊥轴于点Q,
∵OA =OC,∠PAC=90°,
∴∠ACO=∠OAC=45°,
∵∠PAC=90°,
∴∠PAQ=45°,
∴△PAQ 是等腰直角三角形,
∴PQ=AQ=x,
∴AQ+AO=x+3=-x2+2x+3,
解得:(舍去),
∴点P(1,4);
设点P1(m,-m2+2m+3),过点P1作P1D⊥轴于点D,
同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m
相关试卷
这是一份沪科版九年级下册第24章 圆综合与测试测试题,共30页。试卷主要包含了在圆内接四边形ABCD中,∠A,下列判断正确的个数有,如图,一个宽为2厘米的刻度尺等内容,欢迎下载使用。
这是一份初中数学第24章 圆综合与测试同步练习题,共31页。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)