年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测评试题(含答案及详细解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测评试题(含答案及详细解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测评试题(含答案及详细解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步测评试题(含答案及详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版九年级下册第24章 圆综合与测试课后复习题

    展开

    这是一份沪科版九年级下册第24章 圆综合与测试课后复习题,共30页。
    沪科版九年级数学下册第24章圆同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为正六边形边上一动点,点从点出发,沿六边形的边以1cm/s的速度按逆时针方向运动,运动到点停止.设点的运动时间为,以点为顶点的三角形的面积是,则下列图像能大致反映的函数关系的是(    A. B.C. D.2、如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )A. B.C. D.(﹣2,0)或(﹣5,0)3、已知⊙O的半径为4,,则点A在(      A.⊙O B.⊙O C.⊙O D.无法确定4、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是(      A.60 B.90 C.120 D.1805、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为(    A.4 B.6 C.8 D.106、下列四个图案中,是中心对称图形但不是轴对称图形的是(    A. B. C. D.7、如图,在中,,将绕原点O逆时针旋转90°,则旋转后A的对应点的坐标是(    A. B. C. D.8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是(      ).A.90° B.100° C.120° D.150°9、如图,在中,.将绕点按逆时针方向旋转后得到,则图中阴影部分面积为(    A. B. C. D.10、在下列图形中,既是中心对称图形又是轴对称图形的是(   A.  B. C.  D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,分别以边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当时,则阴影部分的面积为__________.2、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).3、如图,将△ABC绕点A顺时针旋转得到△ADE,若∠DAE=110°,∠B=40°,则∠C的度数为________.4、的内接正六边形一边,点是优弧上的一点(点不与点重合)且交于点,则的度数为_______.5、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接写出点B关于原点对称的点B′的坐标:      (2)平移△ABC,使平移后点A的对应点A1的坐标为(2,1),请画出平移后的△A1B1C1(3)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C22、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BEFE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GAGBGC之间的数量关系,并证明.3、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移3个单位得△A1B1C1,请画出△A1B1C1并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C24、如图,AB是⊙O的一条弦,EAB的中点,过点EECOA于点C,过点BO的切线交CE的延长线于点D(1)求证:DBDE(2)若AB12,BD5,求AC长.5、在平面直角坐标系xOy中,的半径为2.点PQ外两点,给出如下定义:若上存在点MN,使得PQMN为顶点的四边形为矩形,则称点PQ的“成对关联点”.(1)如图,点ABCD横、纵坐标都是整数.在点BCD中,与点A组成的“成对关联点”的点是______;(2)点在第一象限,点F与点E关于x轴对称.若点EF的“成对关联点”,直接写出t的取值范围;(3)点Gy轴上.若直线上存在点H,使得点GH的“成对关联点”,直接写出点G的纵坐标的取值范围. -参考答案-一、单选题1、A【分析】设正六边形的边长为1,当上时,过 求解此时的函数解析式,当上时,延长交于点 并求解此时的函数解析式,当上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,从而可得答案.【详解】解:设正六边形的边长为1,当上时, 上时,延长交于点 同理: 为等边三角形, 上时,连接 由正六边形的性质可得: 由正六边形的对称性可得: 由正六边形的对称性可得:上的图象与上的图象是对称的,上的图象与上的图象是对称的,所以符合题意的是A,故选A【点睛】本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.2、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线x轴于点A,交y轴于点B∴令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设⊙P与直线AB相切于D连接PDPDABPD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO∴△APD∽△ABOAP= OP= OP= PP故选:C.【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.3、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,d>r∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔dr;②点P在圆上⇔d=r;③点P在圆内⇔dr4、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.5、A【分析】根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB是⊙O的直径,∵∠BAC=30°,BC=2,故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【分析】过点AACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.【详解】解:如图,过点AACx轴于点C ,则解得:∴点∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.8、D【分析】绕点逆时针旋转,根据旋转的性质得,则为等边三角形,得到,在中,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,可将绕点逆时针旋转如图,连接为等边三角形,中,为直角三角形,且故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.9、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形扇形由旋转性质可知:中,有勾股定理可知:阴影部分的面积=扇形扇形 故选:B.【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.10、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.二、填空题1、【分析】根据阴影部分面积等于以为直径的2 个半圆的面积加上减去为半径的半圆面积即【详解】解:中,故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.2、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形ABCD′的位置,∴∠ADC=∠D=90°,∠DAD′=α∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3、【分析】先根据旋转的性质求得,再运用三角形内角和定理求解即可.【详解】解:将△ABC绕点A顺时针旋转得到△ADE,∠DAE=110°故答案是:30°.【点睛】本题主要考查了旋转的性质、三角形内角和定理等知识点,灵活运用旋转的性质是解答本题的关键.4、90°【分析】先根据的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.【详解】解:∵的内接正六边形一边 故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键5、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.三、解答题1、(1)(4,﹣1);(2)见解析;(3)见解析.【分析】(1)根据关于原点对称的两点的横纵坐标均与原来点的横纵坐标互为相反数,据此可得答案;(2)将三个点分别向右平移3个单位、再向上平移1个单位,继而首尾顺次连接即可;(3)将三个点分别绕原点O逆时针旋转90°后得到对应点,再首尾顺次连接即可.【详解】(1)点B关于原点对称的点B′的坐标为(4,﹣1),故答案为:(4,﹣1);(2)如图所示,△A1B1C1即为所求.(3)如图所示,△A2B2C2即为所求.【点睛】本题主要考查作图—平移变换、旋转变换,解题的关键是掌握平移变换和旋转变换的定义与性质,并据此得出变换后的对应点.2、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明(3)过点,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,(3)证明如下,如图,过点,【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.3、(1)图见解析;A1(3,3);(2)见解析【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(3,3);(2)如图所示:△A2B2C2,即为所求.【点睛】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.4、(1)见解析;(2)【分析】(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.【详解】(1)如图,DCOA∴∠1+∠3=90°, BD为切线,OBBD∴∠2+∠5=90°, OA=OB∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,DE=DB.(2)如图,作DFABF连接OE,∵DB=DEEF=BE=3,在Rt△DEF中,EF=3,DE=BD=5,DF=∴sin∠DEF== ∵∠AOE,∴∠AOE=∠DEF∴在Rt△AOE中,sin∠AOE=AE=6, AO=.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.5、(1)BC;(2);(3)【分析】(1)根据图形可确定与点A组成的“成对关联点”的点;(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;(3)分类讨论:点G上,点G的下方和点G的上方,构造的“成对关联点”,即可求出的取值范围.【详解】(1)如图所示:在点BCD中,与点A组成的“成对关联点”的点是BC故答案为:BC(2)∵在直线上,∵点F与点E关于x轴对称,在直线如下图所示:直线分别交于点,与直线分别交于由题可得:当点E在线段上时,有的“成对关联点”(3)如图,当点G上时,轴,在上不存在这样的矩形;如图,当点G下方时,也不存在这样的矩形;如图,当点G上方时,存在这样的矩形GMNH当恰好只能构成一个矩形时,,直线y轴相交于点K,即解得:(舍),综上:当时,点GH的“成对关联点”.【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试课时训练:

    这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共30页。试卷主要包含了已知⊙O的半径为4,,则点A在等内容,欢迎下载使用。

    九年级下册第24章 圆综合与测试同步练习题:

    这是一份九年级下册第24章 圆综合与测试同步练习题,共29页。试卷主要包含了下列说法正确的个数有,等边三角形,下列语句判断正确的是等内容,欢迎下载使用。

    初中数学第24章 圆综合与测试综合训练题:

    这是一份初中数学第24章 圆综合与测试综合训练题,共30页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map