【历年真题】2022年石家庄栾城区中考数学三模试题(含答案详解)
展开2022年石家庄栾城区中考数学三模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题与它的逆命题都为真命题的是( )
A.已知非零实数x,如果为分式,那么它的倒数也是分式.
B.如果x的相反数为7,那么x为-7.
C.如果一个数能被8整除,那么这个数也能被4整除.
D.如果两个数的和是偶数,那么它们都是偶数.
2、在中,,,那么的值等于( )
A. B. C. D.
3、方程的解为( )
A. B. C. D.无解
4、把分式化简的正确结果为( )
A. B. C. D.
5、若,则下列不等式正确的是( )
A. B. C. D.
6、数轴上到点-2的距离为4的点有( ).
A.2 B.-6或2 C.0 D.-6
7、把 写成省略括号后的算式为 ( )
A. B.
C. D.
8、下列分式中,最简分式是( )
A. B. C. D.
9、如果,且,那么的值一定是( ) .
A.正数 B.负数 C.0 D.不确定
10、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )
A.每条对角线上三个数字之和等于
B.三个空白方格中的数字之和等于
C.是这九个数字中最大的数
D.这九个数字之和等于
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_________.
2、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,…依此类推,则_____.
3、已知与互为相反数,则的值是____.
4、关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
5、如图,在中,,F是边上的中点,则________1.(填“>”“=”或“<”)
三、解答题(5小题,每小题10分,共计50分)
1、某学校准备印刷一批证书,现有两个文印店可供选择:甲店收费方式:收制版费1000元,每本印刷费0.5元;
乙店收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本时,超过部分每本收印刷费0.25元,若该校印制证书x本.
(1)若x不超过2000时,甲店的收费为______元,乙店的收费为______元;
(2)若x超过2000时,乙店的收费为______元;
(3)请问印刷多少本证书时,甲乙两店收费相同?
2、如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣+bx+c经过A,C两点,与x轴的另一交点为B,点D是抛物线上一动点.
(1)求抛物线的解析式;
(2)在对称轴直线l上有一点P,连接CP,BP,则CP+BP的最小值为 ;
(3)当点D在直线AC上方时,连接BC,CD,BD,BD交AC于点E,令CDE的面积为S1,BCE的面积为S2,求的最大值;
(4)点F是该抛物线对称轴l上一动点,是否存在以点B,C,D,F为顶点的平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
3、如图,将边长为4的正方形纸片ABCD折叠,使点A落在边CD上的点M处(不与点C、D重合),连接AM,折痕EF分别交AD、BC、AM于点E、F、H,边AB折叠后交边BC于点G.
(1)求证:EDM∽MCG;
(2)若DM=CD,求CG的长;
(3)若点M是边CD上的动点,四边形CDEF的面积S是否存在最值?若存在,求出这个最值;若不存在,说明理由.
4、某商家在“618购物节”活动中将某种服装按成本价加价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,这件服装的实际售价是多少元?
5、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.
(1)当t为何值时,?
(2)设的面积为,写出与之间的函数关系式.
(3)当EP平分四边形PMEH的面积时,求t的值.
(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.
-参考答案-
一、单选题
1、B
【分析】
先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.
【详解】
解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;
B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;
C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;
D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;
故选B.
【点睛】
本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
2、A
【解析】
【分析】
根据∠A+∠B=90°得出cosB=sinA,代入即可.
【详解】
∵∠C=90°,sinA=.
又∵∠A+∠B=90°,∴cosB=sinA=.
故选A.
【点睛】
本题考查了互余两角三角函数的关系,注意:已知∠A+∠B=90°,能推出sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB.
3、D
【分析】
先去分母,把分式方程转化为整式方程,然后求解即可.
【详解】
解:
去分母得,
解得,
经检验,是原分式方程的增根,
所以原分式方程无解.
故选D.
【点睛】
本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键.
4、A
【分析】
先确定最简公分母是(x+2)(x−2),然后通分化简.
【详解】
==;
故选A.
【点睛】
分式的加减运算中,异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.
5、D
【分析】
不等式性质1:不等式两边同时加上(减去)一个数,不等号方向不改变.;
不等式性质2:不等式两边同时乘(除)一个正数,不等号方向不改变.;
不等式两边同时乘(除)一个负数,不等号方向改变.;
【详解】
A选项,不等号两边同时×(-8),不等号方向改变,,故A选项错误.;
B选项,不等号两边同时-2,不等号方向不改变,,故B选项错误.;
C选项,不等号两边同时×6,不等号方向不改变,,故C选项错误.;
D选项,不等号两边同时×,不等号方向不改变,,故D选项正确.;
【点睛】
不等式两边只有乘除负数时,不等号方向才改变.
6、B
【分析】
分点在点-2的左边和右边两种情况讨论求解.
【详解】
解:点在点-2的左边时,为-2-4=-6,
点在点-2的右边时,为-2+4=2,
所以,在数轴上到点-2的距离是4的点所表示的数是-6或2.
故选:B.
【点睛】
本题考查数轴,注意:此题要分为两种情况:在表示-2点的左边和右边.
7、D
【分析】
先把算式写成统一加号和的形式,再写成省略括号的算式即可.
【详解】
把统一加号和,
再把写成省略括号后的算式为 5-3+1-5.
故选:D.
【点睛】
本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键.
8、C
【详解】
【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】A、分式的分子与分母中的系数34和85有公因式17,可以约分,故A错误;
B、==y−x,故B错误;
C、分子分母没有公因式,是最简分式,故C正确;
D、==,故D错误,
故选C.
【点睛】本题考查了最简分式,熟练掌握最简分式的概念是解题的关键.分式的化简过程,首先要把分子分母分解因式,然后进行约分.
9、A
【分析】
根据有理数的加减法法则判断即可.
【详解】
解:∵a<0,b<0,且|a|<|b|,
∴-b>0,|a|<|-b|,
∴=a+(-b)>0.
故选:A.
【点睛】
本题考查有理数的加减法法则.用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号.
10、B
【分析】
根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断.
【详解】
∵每行、每列、每条对角线上三个数字之和都相等,
而第1列:5+4+9=18,于是有
5+b+3=18,
9+a+3=18,
得出a=6,b=10,
从而可求出三个空格处的数为2、7、8,
所以答案A、C、D正确,
而2+7+8=17≠18,∴答案B错误,
故选B.
【点睛】
本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口.
二、填空题
1、三角形的稳定性
【详解】
一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.
故应填:三角形的稳定性
2、
【分析】
根据题意,可以写出这列数的前几个数,从而可以发现数字的变化特点,进而得到a2019的值.
【详解】
解:,是的差倒数,
即,是的差倒数,
即,是的差倒数,
即,
…
依此类推,∵,
∴.
故答案为:.
【点睛】
本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值.
3、
【分析】
首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴
∴
∴.
故答案为:.
【点睛】
本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键.
4、m=4.
【详解】
分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,
∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,
解得m≤5.5,且m≠5,
则m的最大整数解是m=4.
故答案为m=4.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.
5、<
【分析】
连接AE,先证明得出,根据三角形三边关系可得结果.
【详解】
如图,连接,
在和中,
∴,
∴,
在中,,
∴,
∵F是边上的中点,
∴,
∴,
故答案为:<.
【点睛】
本题考查了全等三角形的判定与性质,三角形三边关系,熟知全等三角形的判定定理与性质是解题的关键.
三、解答题
1、
(1)(1000+0.5x);1.5x
(2)(2500+0.25x)
(3)印刷1000本或6000本证书时,甲乙两店收费相同
【分析】
(1)由题意列代数式为:甲店的收费,乙店的收费;
(2)由题意列代数式为:乙店的收费;
(3)分情况讨论①当时,有,方程的解若小于等于2000,则符合要求;②当时,有,方程的解若大于2000,则符合要求.
(1)
解:由题意知:甲店的收费为元;乙店的收费为;
故答案为:,.
(2)
解:由题意知:乙店的收费为
故答案为:.
(3)
①当时,有,
解得,符合要求;
②当时,有,
解得,符合要求
∴印刷1000本或6000本证书时,甲乙两店收费相同.
【点睛】
本题考查了一元一次方程的应用,列代数式等知识.解题的关键在于正确的列代数式与方程.
2、
(1)
(2)
(3)
(4)存在,(﹣,)或(﹣,)或(,)
【分析】
(1)根据一次函数得到,代入,于是得到结论;
(2)关于对称,当为与对称轴的交点时,CP+BP的最小值为:;
(3)令,解方程得到,,求得,过作轴于,过作轴交于于,根据相似三角形的性质即可得到结论;
(4)根据为边和为对角线,由平行四边形的性质即可得到点的坐标.
(1)
解:令,得,
令,得,
,,
抛物线经过.两点,
,
解得:,
;
(2)
解:关于对称,
当为与对称轴的交点时,
CP+BP的最小值为:,
由(1)得,,
,
CP+BP的最小值为:,
故答案是:;
(3)
解:如图1,过作轴交于,过作轴交于,
令,
解得:,,
,
,
,
,
设,
,
,
,
;
当时,的最大值是;
(4)
解:,
对称轴为直线,
设,,,
①若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
②若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
③若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
综上,的坐标为,或,或,.
【点睛】
本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,平行四边形的性质、方程思想及分类讨论思想,解题的关键是以为边或对角线分类讨论.
3、
(1)见解析
(2)2
(3)存在,10
【分析】
(1)由正方形的性质得,故,由折叠的性质得,故,推出,故可证;
(2)由,得,,设,则,,由勾股定理即可求出的值,即可求出,由相似三角形的性质即可得出的长;
(3)过点作于,根据证明,由全等三角形的性质得,设,,由勾股定理求出、关系,由化为二次函数即可求出最值.
(1)
∵四边形是正方形,
∴,
∴,
∵正方形沿Z折叠,
∴,
∴,
∴,
∴;
(2)
∵正方形的边长为4,,
∴,,
设,则,,
由勾股定理得:,
∴,
解得:,
∴,
∵,
∴,即,
解得:;
(3)
如图,过点作于,
∴,
∴四边形是矩形,
∴,
由折叠的性质可得:,
∴,
∴,
∵,
∴,
∴,
设,,
∵,即,
∴,
,
,
,
,
,
∴当时,有最大值为10.
【点睛】
本题考查几何综合题,主要涉及到折叠的性质,正方形的性质,相似三角形性的判定与性质,全等三角形的判定与性质以及二次函数最值问题,属于中考压轴题,掌握相关知识点间的应用是解题的关键.
4、140元.
【分析】
设衣服的成本价为x元,根据售价−成本价=利润列出方程求解即可.
【详解】
解:设这件服装的成本价为x元,
根据题意列方程得:x(1+40%)×80%−x=15,
解得x=125,
经检验x=125是方程的解,
∴实际售价为:125×(1+40%)×80%=140(元),
答:这件服装的实际售价是140元.
【点睛】
本题主要考查一元一次方程的知识,根据售价−成本价=利润列出方程是解题的关键.
5、(1)t=;(2)y=−t2+6t(0<t<14);(3)t=;(4)
【分析】
(1)通过证明△CEM∽△BMP,可得,即可求解;
(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;
(3)由S△EHP=S△EMP,列出等式可求解;
(4)由对称性可得∠AEP=∠BEP,由角平分线的性质可得PF=PH,由面积关系可求解.
【详解】
解:(1)∵四边形ABCD是矩形
∴AB=CD,BC=AD
∵M是BC边的中点,
∴CM=BM=6cm,
∵,DE=9cm,
∴EC=5cm,
∵PM⊥EM,
∴∠PMB+∠CME=90°,
又∵∠BMP+∠BPM=90°,
∴∠BPM=∠EMC,
又∵∠B=∠C=90°,
∴△CEM∽△BMP,
∴,
∴,
∴t=;
(2)∵四边形ABCD是矩形,
∴∠D=90°,
∴AE2=AD2+DE2,
∵AD=12cm,DE=9cm,
∴AE=cm,
∵ABCD,
∴∠DEA=∠EAB,
∴sin∠DEA=sin∠EAB,
∴,
∴,
∴HP=t,
∴AH==t,
∴HE=15−t,
∵S△EHP=×EH×HP,
∴y=(15−t)×t=−t2+6t(0<t<14);
(3)∵EP平分四边形PMEH的面积,
∴S△EHP=S△EMP,
∴(15−t)×t=×12×(5+14−t)−×6×(14−t)−×6×5,
解得:t1=,t2=
∵0<t<14,
∴t=;
(4)如图2,连接BE,过点P作PF⊥BE于F,
∵点B关于PE的对称点,落在线段AE上,
∴∠AEP=∠BEP,
又∵PH⊥AE,PF⊥BE,
∴PF=PH=t,
∵EC=5cm,BC=12cm,
∴BE=cm,
∵S△ABE=S△AEP+S△BEP,
∴×14×12=×(15+13)×t,
∴t=.
【点睛】
本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键.
【真题汇总卷】2022年石家庄栾城区中考数学一模试题(含答案及详解): 这是一份【真题汇总卷】2022年石家庄栾城区中考数学一模试题(含答案及详解),共26页。试卷主要包含了下列变形中,正确的是,在,,, ,中,负数的个数有.,下列说法正确的是,下列说法中正确的个数是等内容,欢迎下载使用。
【历年真题】中考数学一模试题(含答案及详解): 这是一份【历年真题】中考数学一模试题(含答案及详解),共24页。试卷主要包含了已知等腰三角形的两边长满足+,有下列四种说法,下列说法中正确的个数是等内容,欢迎下载使用。
【历年真题】2022年石家庄栾城区中考数学一模试题(含答案及解析): 这是一份【历年真题】2022年石家庄栾城区中考数学一模试题(含答案及解析),共27页。试卷主要包含了计算3.14-的结果为 .,若,则下列不等式正确的是等内容,欢迎下载使用。