【历年真题】2022年石家庄桥西区中考数学三年真题模拟 卷(Ⅱ)(含详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )
A.每条对角线上三个数字之和等于
B.三个空白方格中的数字之和等于
C.是这九个数字中最大的数
D.这九个数字之和等于
2、下列各数中,是无理数的是( )
A.B.C.D.
3、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )
A.B.C.D.
4、用四舍五入法按要求对0.7831取近似值,其中正确的是( )
A.0.783(精确到百分位)B.0.78(精确到0.01)C.0.7(精确到0.1)D.0.7830(精确到0.0001)
5、在中,,,那么的值等于( )
A.B.C.D.
6、如图,反比例函数图象经过矩形边的中点,交边于点,连接、、,则的面积是( )
A.B.C.D.
7、已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为( )
A.13B.14C.13或14D.9
8、已知三角形的一边长是6 cm,这条边上的高是(x+4)cm,要使这个三角形的面积不大于30 cm2,则x的取值范围是( )
A.x>6B.x≤6C.x≥-4D.-4<x≤6
9、若分式有意义,则的取值范围是( )
A.B.C.D.
10、方程的解为( )
A.B.C.D.无解
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为 cm的圆形纸片所覆盖.
2、若关于x的分式方程有增根,则增根为__________,m的值为__________.
3、已知点O在直线AB上,且线段OA=4 cm,线段OB=6 cm,点E,F分别是OA,OB的中点,则线段EF=________cm.
4、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
5、将一个圆分割成三个扇形,它们的圆心角度数比为,那么最大扇形的圆心角的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量(件)与销售单价(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
(1)求公司销售该商品获得的最大日利润;
(2)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过元,在日销售量(件)与销售单价(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求的值.
2、如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣+bx+c经过A,C两点,与x轴的另一交点为B,点D是抛物线上一动点.
(1)求抛物线的解析式;
(2)在对称轴直线l上有一点P,连接CP,BP,则CP+BP的最小值为 ;
(3)当点D在直线AC上方时,连接BC,CD,BD,BD交AC于点E,令CDE的面积为S1,BCE的面积为S2,求的最大值;
(4)点F是该抛物线对称轴l上一动点,是否存在以点B,C,D,F为顶点的平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
3、在二次函数y=ax2+bx+c中,x与y的部分对应值如表:
下列说法:①该二次函数的图像经过原点;②该二次函数的图像开口向下;③该二次函数的图像经过点(﹣1,3);④当x>0时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根,其中正确的有( )
A.①②③B.①③⑤C.①③④D.②④⑤
4、对于点M,N,给出如下定义:在直线MN上,若存在点P,使得 ,则称点P是“点M到点N的k倍分点”.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
例如:如图,点Q1,Q2,Q3在同一条直线上, Q1Q2=3,Q2Q3=6,则点Q1是点Q2到点Q3的 倍分点,点Q1是点Q3到点 Q2的3倍分点.
已知:在数轴上,点A,B,C分别表示-4,-2,2.
(1)点B是点A到点C的______倍分点,点C是点B到点A的______倍分点;
(2)点B到点C的3倍分点表示的数是______;
(3)点D表示的数是x,线段BC上存在点A到点D的2倍分点,写出x的取值范围.
5、如图,△ABC中,∠C=90°,AC=3,BC=4,在线段AB上,动点M从点A出发向点B做匀速运动,同时动点N从B出发向点A做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N作AB的垂线,分别交两直角边AC,BC所在的直线于点D、E,连接DE,若运动时间为t秒,在运动过程中四边形DENM总为矩形(点M、N重合除外).
(1)写出图中与△ABC相似的三角形;
(2)如图,设DM的长为x,矩形DENM面积为S,求S与x之间的函数关系式;当x为何值时,矩形DENM面积最大?最大面积是多少?
(3)在运动过程中,若点M的运动速度为每秒1个单位长度,求点N的运动速度.求t为多少秒时,矩形DEMN为正方形?
-参考答案-
一、单选题
1、B
【分析】
根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断.
【详解】
∵每行、每列、每条对角线上三个数字之和都相等,
而第1列:5+4+9=18,于是有
5+b+3=18,
9+a+3=18,
得出a=6,b=10,
从而可求出三个空格处的数为2、7、8,
所以答案A、C、D正确,
而2+7+8=17≠18,∴答案B错误,
故选B.
【点睛】
本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口.
2、C
【分析】
根据无理数的概念:无限不循环小数,由此可进行排除选项.
【详解】
解:A.是分数,是有理数,选项不符合题意;
B.,是整数,是有理数,选项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.是无理数,选项符合题意;
D.是整数,是有理数,选项不符合题意.
故选C.
【点睛】
本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键.
3、D
【分析】
根据负数比较大小的概念逐一比较即可.
【详解】
解析:.
故选:
【点睛】
本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.
4、B
【分析】
精确到某一位,即对下一位的数字进行四舍五入;0.783(精确到千分位),0.7831(精确到0.1)是0.8.
【详解】
A. 0.783(精确到千分位), 所以A选项错误;
B、0.78(精确到0.01),所以B选项正确;
C、0.8(精确到0.1),所以C选项错误;
D、0.7831(精确到0.0001),所以D选项错误;
故选:B
【点睛】
本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.
5、A
【解析】
【分析】
根据∠A+∠B=90°得出csB=sinA,代入即可.
【详解】
∵∠C=90°,sinA=.
又∵∠A+∠B=90°,∴csB=sinA=.
故选A.
【点睛】
本题考查了互余两角三角函数的关系,注意:已知∠A+∠B=90°,能推出sinA=csB,csA=sinB,tanA=ctB,ctA=tanB.
6、B
【分析】
连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF,得出结果.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
连接OB.
∵E、F是反比例函数y=﹣(x>0)图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=1.5.
∵矩形OABC边AB的中点是E,∴S△BOE=S△AOE=1.5,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣1.5=1.5,∴F是BC的中点,∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣1.5﹣1.5﹣0.5×1.5=.
故选B.
【点睛】
本题主要考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出点F为BC的中点是解决本题的关键.
7、C
【分析】
首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.
【详解】
解:根据题意得,a﹣4=0,b﹣5=0,
解得a=4,b=5,
①4是腰长时,三角形的三边分别为4、4、5,
∵4+4=8>5,
∴能组成三角形,周长=4+4+5=13,
②4是底边时,三角形的三边分别为4、5、5,
能组成三角形,周长=4+5+5=14,
所以,三角形的周长为13或14.
故选C.
【点睛】
本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.
8、D
【解析】
【分析】
根据三角形面积公式列出不等式组,再解不等式组即可.
【详解】
由题意得:,解得:-4<x≤6.
故选D.
【点睛】
本题考查了一元一次不等式组的应用.解题的关键是利用三角形的面积公式列出不等式组.
9、A
【解析】
试题解析:根据题意得:3-x≠0,
解得:x≠3.
故选A.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
考点:分式有意义的条件.
10、D
【分析】
先去分母,把分式方程转化为整式方程,然后求解即可.
【详解】
解:
去分母得,
解得,
经检验,是原分式方程的增根,
所以原分式方程无解.
故选D.
【点睛】
本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键.
二、填空题
1、.
【分析】
作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可.
【详解】
解:作圆O的直径CD,连接BD,
∵圆周角∠A、∠D所对弧都是,
∴∠D=∠A=60°.
∵CD是直径,∴∠DBC=90°.
∴sin∠D=.
又∵BC=3cm,∴sin60°=,解得:CD=.
∴的半径是(cm).
∴△ABC能被半径至少为cm的圆形纸片所覆盖.
【点睛】
本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.
2、 1
【分析】
分式方程的增根是使得最简公分母为0的未知数的取值,根据分式方程的增根定义即可求解.
【详解】
解:∵原方程有增根,
∴最简公分母,解得,即增根为2,
方程两边同乘,得,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
化简,得,
将代入,得.
故答案为:
【点睛】
本题主要考查分式方程增根的定义,解决本题的关键是要熟练掌握分式方程的解法和增根的定义.
3、1或5
【分析】
根据题意,画出图形,此题分两种情况;
①点O在点A和点B之间(如图①),则;②点O在点A和点B外(如图②),则.
【详解】
如图,(1)点O在点A和点B之间,如图①,
则.
(2)点O在点A和点B外,如图②,
则.
∴线段EF的长度为1cm或5cm.
故答案为1cm或5cm.
【点睛】
此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.
4、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
5、
【分析】
根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数.
【详解】
最大扇形的圆心角的度数=360°×=200°.
故答案为200°.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
三、解答题
1、
(1)当销售单价是75元时,最大日利润是2025元;
(2)
【分析】
(1)先求解商品的日销售量(件)与销售单价(元)的函数关系式,再利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再利用二次函数的性质可得答案;
(2)先利用该商品获得的最大日利润等于每件商品的利润乘以销售数量建立二次函数的关系式,再求解当利润为元时的值,再分两种情况讨论即可.
(1)
解:设商品的日销售量(件)与销售单价(元)是
解得:
所以商品的日销售量(件)与销售单价(元)是
设公司销售该商品获得的日利润为元,
,
∵,,
∴,
∵,
∴抛物线开口向下,函数有最大值,
∴当时,,
答:当销售单价是75元时,最大日利润是2025元.
(2)
解:,
当时,,
解得,,
∵,
∴有两种情况,
①时,在对称轴左侧,随的增大而增大,
∴当时,,
②时,在范围内,
∴这种情况不成立,
∴.
【点睛】
本题考查的是利用待定系数法求解一次函数的解析式,列二次函数的关系式,二次函数的性质,一元二次方程的解法,掌握“该商品获得的最大日利润等于每件商品的利润乘以销售数量”是解本题的关键.
2、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
(2)
(3)
(4)存在,(﹣,)或(﹣,)或(,)
【分析】
(1)根据一次函数得到,代入,于是得到结论;
(2)关于对称,当为与对称轴的交点时,CP+BP的最小值为:;
(3)令,解方程得到,,求得,过作轴于,过作轴交于于,根据相似三角形的性质即可得到结论;
(4)根据为边和为对角线,由平行四边形的性质即可得到点的坐标.
(1)
解:令,得,
令,得,
,,
抛物线经过.两点,
,
解得:,
;
(2)
解:关于对称,
当为与对称轴的交点时,
CP+BP的最小值为:,
由(1)得,,
,
CP+BP的最小值为:,
故答案是:;
(3)
解:如图1,过作轴交于,过作轴交于,
令,
解得:,,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
,
设,
,
,
,
;
当时,的最大值是;
(4)
解:,
对称轴为直线,
设,,,
①若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
②若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
③若四边形为平行四边形,
则,
,
解得:,,
的坐标为,;
综上,的坐标为,或,或,.
【点睛】
本题考查了二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,平行四边形的性质、方程思想及分类讨论思想,解题的关键是以为边或对角线分类讨论.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、B
【分析】
根据表格可知当时,,即可判断①,根据二次函数图象的对称性可知对称轴为,在对称轴左边随的增大而减小,在对称轴的右边随的增大而增大,即可判断②④,根据对称性可知和时的函数值相等,即可判断③,该函数存在两个函数值为0的点,则即可判断⑤.
【详解】
解:∵当时,,
∴该二次函数的图像经过原点,故①正确;
对称轴为,
方程ax2+bx+c=0有两个不相等的实数根,故⑤正确;
和时的函数值相等
即该二次函数的图像经过点(﹣1,3),故③正确
在对称轴左边即,随的增大而减小,在对称轴的右边即,随的增大而增大,
故②④不正确
故正确的是①③⑤
故选B
【点睛】
本题考查了二次函数图象的性质,掌握二次函数的性质是解题的关键.
4、
(1);
(2)1或4
(3)-3≤x≤5
【分析】
(1)根据“倍分点”的定义进行判断即可;
(2)根据“倍分点”的定义进行解答;
(3)根据“倍分点”的定义,分两种情况列出关于x的一元一次方程,解得x的值即可;
(1)
解:由题意得,AB=2,BC=4,AC=6
∴AB=BC,BC=AC
∴点B是点A到点C的倍分点,点C是点B到点A的倍分点;
故答案为:;
(2)
解:设3倍分点为M,则BM=3CM,
若M在B左侧,则BM<CM,不成立;
若M在BC之间,则有BM+CM=BC=4,
∵BM=3CM
∴4CM=4,
CM=1
∴M点为1;
若M在C点右侧,则有BC+CM=BM
∵BM=3CM,BC=4
∴CM=2
所以M点为4
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上所述,点B到点C的3倍分点表示的数是1或4;
故答案为:1或4
(3)
解:当2倍分点为B时,x取得最小值,
此时AB=2(-2-x)=2
解得:x=-3
当2倍分点为C点且D点在C点右侧时,x取得最大值
此时AC=2(x-2)=6
解得x=5
所以-3≤x≤5;
【点睛】
本题主要考查两点间的距离,一元一次方程的应用,注意分类讨论的思想是解题的关键.
5、
(1)图中与△ABC相似的三角形有△DEC,△EBN,△ADM
(2)当时,矩形DENM面积最大,最大面积是3
(3)点N的速度为每秒个单位长度,当时,矩形DEMN为正方形
【解析】
(1)
解:∵四边形DENM是矩形,
∴DE∥AB,∠DMN=∠DMA=∠ENM=∠ENB=90°,
∴△CDE∽△CAB,
∵∠ACB=∠AMD=∠ENB=90°,∠A=∠A,∠B=∠B,
∴△AMD∽△ACB,△ENB∽△ACB;
∴图中与△ABC相似的三角形有△DEC,△EBN,△ADM;
(2)
解:∵在△ABC中,∠C=90°,AC=3,BC=4,
∴,
∵△ADM∽△ABC,
∴,
∵,
∴,
∴
∴,
∴,
∵△ADM∽△ABC,△DEC∽△ABC,
∴△ADM∽△DEC,
∴,即,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
∵,
∴当时,矩形DENM面积最大,最大面积是3;
(3)
解:当M、N相遇前,
∵四边形DENM是矩形,
∴NE=MD,
∵△AMD∽△ABC,
∴,
由题意得,
∴,
∴;
∵△BEN∽△BAC,
∴,即
∴,
∴点N的速度为每秒个单位长度;
∵当N、M相遇时,有AM+BM=AB,
∴,
解得,即M、N相遇的时间为,
当N、M相遇后继续运动,N点到达A点时,
∴,
解得,即N点到底A点的时间为;
∵矩形DENM是正方形,
∴DM=MN=EN,
当N、M相遇前,即当时,,,,
∴,
∴,
解得;
当N、M相遇后,即当时,,,,
∴,,
∴,
∴,
解得不符合题意,
∴综上所述,点N的速度为每秒个单位长度,当时,矩形DEMN为正方形.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了相似三角形的性质与判定,矩形的性质,正方形的性质,勾股定理,二次函数的性质,熟知相似三角形的性质与判定条件是解题的关键.
销售单价(元)
40
60
80
日销售量(件)
80
60
40
X
……
﹣2
0
2
3
……
Y
……
8
0
0
3
……
【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇总卷】2022年石家庄桥西区中考数学模拟测评 卷(Ⅰ)(含答案及详解),共27页。试卷主要包含了是-2的 .,如果,且,那么的值一定是 .等内容,欢迎下载使用。
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。
【历年真题】2022年石家庄晋州市中考数学真题模拟测评 (A)卷(含详解): 这是一份【历年真题】2022年石家庄晋州市中考数学真题模拟测评 (A)卷(含详解),共19页。试卷主要包含了把分式化简的正确结果为,下列解方程的变形过程正确的是等内容,欢迎下载使用。