【历年真题】2022年广东省佛山市禅城区中考数学一模试题(含答案详解)
展开
这是一份【历年真题】2022年广东省佛山市禅城区中考数学一模试题(含答案详解),共22页。试卷主要包含了下列命题,是真命题的是,方程的解是.等内容,欢迎下载使用。
2022年广东省佛山市禅城区中考数学一模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )A. B. C. D.2、已知二次函数,则关于该函数的下列说法正确的是( )A.该函数图象与轴的交点坐标是B.当时,的值随值的增大而减小C.当取1和3时,所得到的的值相同D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象3、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③4、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是,按照这种算法,算式二被盖住的部分是( )A. B. C. D. 5、为庆祝建党百年,六年级一班举行手工制作比赛,下图小明制作的一个小正方体盒子展开图,把展开图叠成小正方体后,有“爱”字一面的相对面的字是( )A.的 B.祖 C.国 D.我6、下列命题,是真命题的是( )A.两条直线被第三条直线所截,内错角相等B.邻补角的角平分线互相垂直C.相等的角是对顶角D.若,,则7、方程的解是( ).A. B. C., D.,8、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).A. B.C. D.9、如图,点,为线段上两点,,且,设,则关于的方程的解是( )A. B. C. D.10、下列图形中,既是轴对称图形又是中心对称图形是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是某手机店今年8月至12月份手机销售额统计图,根据图中信息,可以判断该店手机销售额变化最大的相邻两个月是________(填月份).2、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.3、如图,把纸片沿DE折叠,使点A落在图中的处,若,,则的大小为______.4、如图是一个运算程序的示意图,若开始输入x的值为50,我们发现第1次输出的结果为25,第2次输出的结果为32,……则第2022次输出的结果为_________.5、底面圆的半径为3,高为4的圆锥的全面积是______.三、解答题(5小题,每小题10分,共计50分)1、如图,.(1)尺规作图:作的角平分线,交于点;(不写作法,保留作图痕迹)(2)求证:是等腰三角形.2、如图,AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,延长DC与BA的延长线相交于E点.(1)求证:△EAC∽△ECO;(2)若,求的值.3、阅读材料:在合并同类项中,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.(1)把看成一个整体,合并的结果是 .(2)已知,求的值:(3)已知,,,求的值.4、在2021年南通市老旧小区综合改造工程中,崇川区某街道“雨污分流管网改造”项目需要铺设一条长1080米的管道,由于天气等各种条件限制,实际施工时,平均每天铺设管道的长度比原计划减少10%,结果推迟3天完成.求原计划每天铺设管道的长度.5、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人.(1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人?(2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用. -参考答案-一、单选题1、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线=,∴圆锥的侧面积=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2、C【分析】把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数的图象与轴的交点坐标是,∴A选项错误;∵二次函数的图象开口向上,对称轴是直线,∴当时,的值随值的增大而增大,∴B选项错误;∵当取和时,所得到的的值都是11,∴C选项正确;∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,∴D选项错误.故选:C.【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.3、B【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.4、A【分析】参考算式一可得算式二表示的是,由此即可得.【详解】解:由题意可知,图中算式二表示的是,所以算式二为 所以算式二被盖住的部分是选项A,故选:A.【点睛】本题考查了有理数的加法,理解筹算的运算法则是解题关键.5、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第一列的“我”与“的”是相对面,第二列的“我”与“国”是相对面,“爱”与“祖”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6、B【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】解:A、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;、邻补角的角平分线互相垂直,正确,是真命题,符合题意;、相等的角不一定是对顶角,故错误,是假命题,不符合题意;、平面内,若,,则,故原命题错误,是假命题,不符合题意,故选:.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大.7、C【分析】先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.【详解】解:,x(x-1)=0,则x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.8、D【分析】根据各个选项中的条件和全等三角形的判定可以解答本题.【详解】解:∵AC∥DF,∴∠A=∠EDF,∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;故选:D.【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.9、D【分析】先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.【详解】解:,,,,解得,则关于的方程为,解得,故选:D.【点睛】本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.10、B【分析】根据轴对称图形和中心对称图形的定义求解即可.【详解】解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.故选:B.【点睛】此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.二、填空题1、【分析】计算出相邻两个月销售额的变化,然后比较其绝对值的大小.【详解】解:根据图中的信息可得,相邻两个月销售额的变化分别为:、、、,∵,∴该店手机销售额变化最大的相邻两个月是,故答案为:【点睛】此题考查了有理数减法的应用以及有理数大小的比较,解题的关键是掌握有理数减法运算法则以及有理数大小比较规则.2、2【分析】设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.【详解】解:设每件商品售价降低元则每天的利润为:,∵∴当时,最大为968元故答案为2.【点睛】本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.3、【分析】利用折叠性质得,,再根据三角形外角性质得,利用邻补角得到,则,然后利用进行计算即可.【详解】解:∵,∴,∵纸片沿DE折叠,使点A落在图中的A'处,∴,,∵,∴,∴,∴.故答案为:.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.4、2【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:由设计的程序知,依次输出的结果是25,32,16,8,4,2,1,8,4,2,,发现从第4个数开始,以8,4,2,1循环出现,则,,故第2022次输出的结果是2.故答案为:2.【点睛】本题考查数字的变化类,解题的关键是明确题意,发现数字的变化特点,求出相应的输出结果.5、【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可.【详解】∵圆锥的底面半径为3,高为4,∴母线长为5,∴圆锥的底面积为:,圆锥的侧面积为:,∴圆锥的全面积为:故答案为:.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.三、解答题1、(1)作图见解析(2)证明见解析【分析】(1)按照角平分线的作法作图即可.(2)由(1)问知,由知,即可得到,再由等角对等边可知,即可证得为等腰三角形.(1)如图所示,以A为圆心,在AB、AD线段上作点E、F,使得AE=AF,再以A、F为圆心,大于长度为半径画弧,在∠DAB中有交点G,连接AG,延长AG交BC于点P.(2)∵∴由∵是的角平分线∴∴∴∴为等腰三角形【点睛】本题考查了作角平分线,等腰三角形的证明,作∠OAB的角平分线步骤如下,在和上,分别截取、,使;分别以D、E为圆心,大于长为半径画弧,在内,两弧交于点C;作射线,则就是所求作的角平分线;由等角对等边即可证得三角形为等腰三角形.2、(1)见解析(2)【分析】(1)由题意可证得△AOC≌△DOC,从而可得对应边、对应角都相等,再由△ECO、△EDO的内角和定理,可证得,从而可得△EAC∽△ECO;(2)过点C作CF⊥EO,由,可设CF=3x,则可得OF=4x,OC=5x=OA,故可得AF=x,可求AC=x,,从而可得,即为的值.(1)证明:∵AB为⊙O的直径,C、D为圆上两点,连接AC、CD,且AC=CD,∴在△CAO与△CDO中:∴△CAO≌△CDO,∴,在△ECO与△EDO中,,,∴,在△EAC与△ECO中,,,∴△EAC∽△ECO.(2)解:过点C作CF⊥EO,∵,∴,设CF=3x,则OF=4x,∴OC==OA,∴AF=5x-4x= x,∴AC=,∴,由(1)得△EAC∽△ECO,∴,∴.【点睛】本题考查了三角形相似的判定及性质,三角函数的应用,解题的关键是作出辅助线,利用好数形结合的思想.3、(1)(2)(3)【分析】(1)将系数相加减即可;(2)将原式变形后整体代入,即可求出答案;(3)将原式变形后,再整体代入计算.(1)解:= =,故答案为:;(2)解:∵∴原式;(3)解:∵,,,∴原式.【点睛】此题考查了整式的加减法,整式的化简求值,正确掌握整式的加减法计算法则及整体代入计算方法是解题的关键.4、40米【分析】设原计划每天铺设管道的长度为x米,等量关系为:实际完成铺设管道的天数−计划完成铺设管道的天数=3,根据此等量关系列出方程,解方程即可.【详解】设原计划每天铺设管道的长度为x米,则实际每天铺设管道长度为(1-10%)x米由题意得:解得:x=40经检验,x=40是原方程的解,且符合题意答:原计划每天铺设管道40米【点睛】本题考查了分式方程的实际应用,理解题意、找到等量关系并正确列出方程是关键,注意:由于得到的是分式方程,所以一定要检验.5、(1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人(2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元【分析】(1)设1辆甲型客车与1辆乙型客车的载客量分别是人,由题意知计算求解即可.(2)设租用甲型客车辆,乙型客车辆,由题意知,解得:,费用,可知 时费用最低,进而得出结果.(1)解:设1辆甲型客车与1辆乙型客车的载客量分别是人由题意知解得∴1辆甲型客车与1辆乙型客车的载客量分别是人.(2)解:设租用甲型客车辆,乙型客车辆由题意知解得:费用费用最低时,辆元∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.
相关试卷
这是一份【历年真题】中考数学一模试题(含答案及详解),共24页。试卷主要包含了已知等腰三角形的两边长满足+,有下列四种说法,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【历年真题】2022年河北省唐山市中考数学一模试题(含答案及详解),共23页。
这是一份【真题汇编】2022年广东省佛山市禅城区中考数学二模试题(含详解),共27页。试卷主要包含了已知的两个根为,下列各数中,是无理数的是等内容,欢迎下载使用。