【真题汇总卷】2022年广东省江门市中考数学真题模拟测评 (A)卷(含详解)
展开
这是一份【真题汇总卷】2022年广东省江门市中考数学真题模拟测评 (A)卷(含详解),共29页。试卷主要包含了下列命题错误的是,下列说法中错误的是等内容,欢迎下载使用。
2022年广东省江门市中考数学真题模拟测评 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于的分式方程无解,则的值为( )A.0 B.0或-8 C.-8 D.0或-8或-42、不等式组的最小整数解是( )A.5 B.0 C. D.3、下列各组图形中一定是相似形的是( )A.两个等腰梯形 B.两个矩形 C.两个直角三角形 D.两个等边三角形4、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)5、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )A. B.2 C. D.26、下列命题错误的是( )A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短C.无理数包括正无理数、0、负有理数 D.等角的补角相等7、下列各组数据中,能作为直角三角形的三边长的是( )A.,, B.4,9,11 C.6,15,17 D.7,24,258、下列关于x的方程中一定有实数根的是( )A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=09、下列说法中错误的是( )A.若,则 B.若,则C.若,则 D.若,则10、定义一种新运算:,,则方程的解是( )A., B., C., D.,第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)__________;(2)__________;(3)__________;(4)__________;(5)__________;(6)__________;(7)__________;(8)__________;(9)__________.2、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.3、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.4、已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,则这个两位数是___.5、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.三、解答题(5小题,每小题10分,共计50分)1、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.2、计算:.3、在平面直角坐标系中,对于、两点,用以下方式定义两点间的“极大距离”;若,则;若,则.例如:如图,点,则.(理解定义)(1)若点、,则______.(2)在点、、、中,到坐标原点的“极大距离”是2的点是______.(填写所有正确的字母代号)(深入探索)(3)已知点,,为坐标原点,求的值.(拓展延伸)(4)经过点的一次函数(、是常数,)的图像上是否存在点,使,为坐标原点,直接写出点的个数及对应的的取值范围.4、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.(1)填空:当时,______;当时,______;(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)5、已知点P(m,4)在反比例函数的图像上,正比例函数的图像经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)求P、Q两点之间的距离.(3)如果点M在y轴上,且MP=MQ,求点M的坐标. -参考答案-一、单选题1、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.【详解】∵∴,∴,∴,∴当m+4=0时,方程无解,故m= -4;∴当m+4≠0,x=2时,方程无解,∴故m=0;∴当m+4≠0,x= -2时,方程无解,∴故m=-8;∴m的值为0或-8或-4,故选D.【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.2、C【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、D【分析】根据相似形的形状相同、大小不同的特点,再结合等腰梯形、矩形,直角三角形、等边三角形的性质与特点逐项排查即可.【详解】解:A、两个等腰梯形的形状不一定相同,则不一定相似,故本选项错误;B、两个矩形的形状不一定相同,则不一定相似,故本选项错误;C、两个直角三角形的形状不一定相同,则不一定相似,故本选项错误;D、两个等边三角形的大小不一定相同,但形状一定相同,则一定相似,故本选项正确.故选D.【点睛】本题主要考查了相似图形的定义,理解相似形的形状相同、大小不同的特点成为解答本题的关键.4、A【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.5、A【分析】依据矩形的性质即可得到的面积为2,再根据,即可得到的值.【详解】解:,,矩形的面积为8,,,对角线,交于点,的面积为2,,,,即,,,,故选:A.【点睛】本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.6、C【分析】根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.【详解】解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;B、两点之间,线段最短,该命题正确,故本选项不符合题意;C、0不是无理数,该命题错误,故本选项符合题意;D、等角的补角相等,该命题正确,故本选项不符合题意;故选:C【点睛】本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.7、D【分析】由题意直接依据勾股定理的逆定理逐项进行判断即可.【详解】解:A.∵,∴,,为边不能组成直角三角形,故本选项不符合题意;B.∵42+92≠112,∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;C.∵62+152≠172,∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;D.∵72+242=252,∴以7,24,25为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.8、D【分析】分别求出方程的判别式,根据判别式的三种情况分析解答.【详解】解:A、∵x2=﹣x﹣1,∴,∵,∴该方程没有实数根;B、2x2﹣6x+9=0,∵,∴该方程没有实数根;C、x2+mx+2=0,∵,无法判断与0的大小关系,∴无法判断方程根的情况;D、x2﹣mx﹣2=0,∵,∴方程一定有实数根,故选:D.【点睛】此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.9、C【分析】根据不等式的性质进行分析判断.【详解】解:A、若,则,故选项正确,不合题意;B、若,则,故选项正确,不合题意;C、若,若c=0,则,故选项错误,符合题意;D、若,则,故选项正确,不合题意;故选C.【点睛】本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10、A【分析】根据新定义列出关于x的方程,解方程即可.【详解】解:由题意得,方程,化为,整理得,,,∴,解得:,,故选A.【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.二、填空题1、 【分析】异分母分数加减运算先通分,后加减,最后化为最简即可;同分母分数直接加减;分式乘除运算结果化为最简.【详解】解:(1)故答案为:1(2)故答案为:.(3) 故答案为:.(4)故答案为:.(5)故答案为:.(6)故答案为:.(7)故答案为:.(8)故答案为:.(9)故答案为:.【点睛】本题考查了有理数的加减乘除运算.解题的关键在于牢记运算法则.2、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.3、4.57×106【分析】将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案.【详解】解:根据科学记数法的定义,4570000=4.57×106,故答案为:4.57×106.【点睛】本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.4、84【分析】等量关系为:个位上的数字与十位上的数字的平方和=这个两位数﹣4,把相关数值代入求得整数解即可.【详解】设十位上的数字为x,则个位上的数字为(x﹣4).可列方程为:x2+(x﹣4)2=10x+(x﹣4)﹣4解得:x1=8,x2=1.5(舍),∴x﹣4=4,∴10x+(x﹣4)=84.答:这个两位数为84.故答案为:84【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.5、12【分析】化简代数式,将代数式表示成含有的形式,代值求解即可.【详解】解: 将代入得代数式的值为12故答案为:12.【点睛】本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.三、解答题1、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.(1)解:如图,,,,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时,最大,此时与轴交于点,当点运动到点时,则过点,则解得b的取值范围为:【点睛】本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.2、x-2y【分析】根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.【详解】解:原式.【点睛】本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.3、(1);(2);(3)或;(4)当或时,满足条件的点有1个,当时,满足条件的点有2个,当时,不存在满足条件的点,当时,满足条件的点有2个,当时,不存在满足条件的点.【分析】(1)根据新定义分别计算 再比较即可得到答案;(2)根据新定义分别计算点、、、中,到坐标原点的“极大距离”,从而可得答案;(3)由,先求解 结合 再列绝对值方程即可;(4)先求解直线的解析式为: 再判断在正方形的边上,且 再结合函数图象进行分类讨论即可.【详解】解:(1) 点、, 而 (2) 点 同理可得:、、到原点的“极大距离”为: 故答案为: (3), 而 解得:或 (4)如图,直线过 则 直线为: ,为坐标原点,在正方形的边上,且 当直线过时,则: 解得: 当直线过时,则: 解得: 结合函数图象可得:当或时,满足条件的点有1个,当时,满足条件的点有2个,当时,不存在满足条件的点,当时,满足条件的点有2个,当时,不存在满足条件的点,【点睛】本题考查的是新定义情境下的一次函数的应用,坐标与图形,理解新定义,结合数形结合解题是解题的关键.4、(1)(2)证明见解析(3)或.【分析】(1)根据新定义分别求解即可;(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.(1)解:由新定义可得: 当时, 故答案为:(2)解:设“万象数”为 则其为 则而 所以其“格致数” 所以其“格致数”都能被9整除.(3)解:是的倍数,是的倍数,是的倍数, ,,,a,b,c为整数, 或或或或 或或或或或 而,的值为:或或或或或 是完全平方数,的值为:或.【点睛】本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.5、(1)(2)5(3)【分析】(1)先将点的坐标代入反比例函数解析式求得的值,再待定系数法求正比例函数解析式即可;(2)根据正比例函数解析式求得点的坐标,进而两点距离公式求解即可;(3)根据题意作的垂直平分线,设,勾股定理建立方程,解方程求解即可.(1)解:∵点P(m,4)在反比例函数的图像上,∴解得设正比例函数为将点代入得正比例函数为(2)将点Q(6,n)代入,得(3)如图,设的中点为,过点作交轴于点,设则,即是直角三角形即解得【点睛】本题考查了正比例函数与反比例函数综合,待定系数法求解析式,勾股定理求两点之间的距离,垂直平分线的性质,综合运用以上知识是解题的关键.
相关试卷
这是一份【真题汇总卷】2022年中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了二次函数 y=ax2+bx+c,已知和是同类项,那么的值是,下列说法正确的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解),共24页。试卷主要包含了下列说法正确的是,若,则的值是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年广东省江门市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共19页。试卷主要包含了已知ax2+24x+b=,定义一种新运算,在数2,-2,,中,最小的数为等内容,欢迎下载使用。