【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解)
展开这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟真题测评 A卷(含详解),共24页。试卷主要包含了下列说法正确的是,若,则的值是等内容,欢迎下载使用。
2022年内蒙古赤峰市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
2、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
3、定义一种新运算:,,则方程的解是( )
A., B., C., D.,
4、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
5、已知关于x,y的方程组和的解相同,则的值为( )
A.1 B.﹣1 C.0 D.2021
6、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )
A.25° B.27° C.30° D.45°
7、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
8、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
9、若,则的值是( )
A. B.0 C.1 D.2022
10、一组样本数据为1、2、3、3、6,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.方差是3 D.众数是3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的根为____________.
2、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
3、若,则的值是______.
4、将0.094932用四舍五入法取近似值精确到百分位,其结果是______.
5、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x千米/小时,则所列方程是________.
三、解答题(5小题,每小题10分,共计50分)
1、在的方格纸中,的三个顶点都在格点上.
(1)在图1中画出与相似(不全等)且以AC为公共边的格点三角形(画出一个即可);
(2)将图2中的绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.
2、百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?
3、如图,在中,,,.动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动.过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M.设与重叠部分的面积为S,点P运动的时间为秒.
(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).
(2)当点M落在BC上时,求t的值.
(3)当与的重合部分为三角形时,求S与t之间的函数关系式.
(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值.
4、先化简再求值:其中,
5、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
-参考答案-
一、单选题
1、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
2、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
3、A
【分析】
根据新定义列出关于x的方程,解方程即可.
【详解】
解:由题意得,方程,化为,
整理得,,
,
∴,
解得:,,
故选A.
【点睛】
本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.
4、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
5、B
【分析】
联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.
【详解】
解:联立得:,
解得:,
则有,
解得:,
∴,
故选:B.
【点睛】
此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.
6、B
【分析】
根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.
【详解】
解:∵BE⊥AC,AD=CD,
∴BE是AC的垂直平分线,
∴AB=BC,
∴∠ABC=27°,
∵AD=CD,BD=ED,∠ADB=∠CDE,
∴△ABD≌△CED,
∴∠E=∠ABE=27°,
故选:B.
【点睛】
此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.
7、A
【分析】
利用边边边,可得△NOC≌△MOC,即可求解.
【详解】
解:∵OM=ON,CM=CN, ,
∴△NOC≌△MOC(SSS).
故选:A
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
8、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
9、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
10、C
【分析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
A、平均数为,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为,故此选项符合题意;
D、众数为3,故此选项不符合题意.
故选:C.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
二、填空题
1、,
【分析】
移项后再因式分解求得两个可能的根.
【详解】
解:,
,
x=0或x-1=0,
解得,,
故答案为:,.
【点睛】
本题考查一元二次方程解法中的因式分解法,掌握因式分解是本题关键.
2、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
3、
【分析】
根据绝对值、平方的非负性,可得 ,再代入即可求解.
【详解】
解:∵,
∴ ,
解得: ,
∴.
故答案为:
【点睛】
本题主要考查了绝对值、平方的非负性,乘方运算,熟练掌握绝对值、平方的非负性,乘方运算法则是解题的关键.
4、0.09
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为:0.09.
【点睛】
本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
5、
【分析】
根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=小时,即可列出方程.
【详解】
由题意,骑自行车的学生所用的时间为小时,乘汽车的学生所用的时间为小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=小时,得方程:
故答案为:
【点睛】
本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)分别计算出AB,AC,BC的长,根据相似三角形的性质可得出的长,即可作出图形;
(2)根据网格结构找出点A、B绕着点C按顺时针方向旋转90°后的对应点的位置,再与点C顺次连接即可.
(1)
如图所示,即为所求;
(2)
如图所示,即为所求;
【点睛】
本题考查了相似三角形的判定与性质,利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
2、10元或20元
【分析】
设每件童装应降价x元,根据题意列出一元二次方程,解方程求解即可
【详解】
解:设每件童装应降价x元
根据题意,得
解这个方程,得
答:每件童装应降价10元或20元.
【点睛】
本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.
3、(1);(2);(3)当,;当时,(4),,.
【分析】
(1)根据∠C=90°,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;
(2)由AQPM,APQM,可得,证△CQM∽△CAB,可得答案;
(3)当时,根据勾股定理和三角形面积可得;当,△PQM与△ABC的重合部分不为三角形;当时,由S=S△PQB-S△BPH计算得;
(4)分3中情况考虑,①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,在Rt△APF中,cosA = ,解得t = ,②当N到A、B距离相等时,过N作NG⊥AB于G,同理解得t = ,③当N到B、C距离相等时,可证明AP=BP=AB=,可得答案.
【详解】
(1)如下图:
∵∠C=90°,AB=5,AC=4,
∴cosA=
∵PQ⊥AB,
∴cosA=
∵动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t>0)秒,
∴AP=4t,
∴
∴AQ=5t,
∴CQ=AC-AQ=4-5t,
故答案为:4-5t;
(2)
∵AQPM,APQM,
∴四边形AQMP是平行四边形.
∴.
当点M落在BC上时,
∵APQM,
∴.
∵,
∴△CQM∽△CAB,
∴.
∴.
∴.
∴当点M落在BC上时,;
(3)当时,
此时△PQM与△ABC的重合部分为三角形,
由(1)(2)知:,,
∴PQ=,
∵∠PQM=∠QPA=90°
∴,
当Q与C重合时,CQ=0,即4-5t=0,
∴
当,△PQM与△ABC的重合部分不为三角形,
当时,如下图:
∵,
∴PB=5-4t,
∵PMAC
∴,即
∴,
∵,
∴,
∴,
∴S=S△PQB-S△BPH,
.
综上所述:当,;当时,
(4)①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,如图:
∵N到A、C距离相等,NE⊥AC,
∴NE是AC垂直平分线,
∴AE=AC= 2,
∵N是PM中点,
∴PN=PM=AQ=
∴AF=AE- EF=2-
在Rt△APF中,cosA =
∴
解得t =
②当N到A、B距离相等时,过N作NG⊥AB于G,如图:
∴AG=AB=
∴PG=AG-AP=-4t
∴cos∠NPG=cosA=
∴
而PN=PM=AQ=t
∴
解得t =
③当N到B、C距离相等时,连接CP,如图:
∵PMAC,AC⊥BC
∴PM⊥BC,
∴N到B、C距离相等,
∴N在BC的垂直平分线上,即PM是BC的垂直平分线,
∴PB= PC,
∴∠PCB=∠PBC,
∴90°-∠PCB= 90°-∠PBC,即∠PCA=∠PAC,
∴PC= PA,
∴AP=BP=AB=,
∴t=
综上所述,t的值为或或
【点睛】
本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程.
4、,
【分析】
先根据去括号和合并同类项法则化简,再把,代入计算即可.
【详解】
解:,
=
当时,原式=.
【点睛】
本题考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则及有理数的混合运算.
5、
(1)①;②
(2)不成立,
【分析】
(1)①由直角三角形的性质可得出答案;
②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;
(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;
(1)
①∵,,,
∴,
∵sin∠EAB=
∴,
故答案为:30°;
②.
如图1,过点E作交CA的延长线于M,
∵,,
∴,∴,
∴,
∴,
∵将线段AE绕点E顺时针旋转90°得到EF,
∴,,
∴,
在△FEC和△AEM中
,
∴,
∴,
∴,
∵为等腰直角三角形,
∴,
∴;
故答案为:;
(2)
不成立.
如图2,过点F作交BC的延长线于点H.
∴,,
∵,
∴,
在△FEC和△AEM中
,
∴,
∴,,
∴,
∴为等腰直角三角形,
∴.
又∵,
即.
【点睛】
本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.
相关试卷
这是一份【真题汇总卷】2022年重庆市南岸区中考数学模拟真题测评 A卷(含详解),共25页。试卷主要包含了如图,是的外接圆,,则的度数是,已知,则的值为等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年内蒙古赤峰市中考数学模拟定向训练 B卷(含答案及详解),共22页。试卷主要包含了下列二次根式的运算正确的是,若,则值为,已知,则代数式的值是,下列命题错误的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了有下列说法,下列计算正确的是,一组样本数据为1,下列说法正确的是等内容,欢迎下载使用。