【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解)
展开最新中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如果,那么的取值范围是( )
A. B. C. D.
2、如图,在中,D,E分别是边,上的点,若,则的度数为( )
A. B. C. D.
3、关于x,y的方程组的解满足x+y<6,则m的最小整数值是( )
A.-1 B.0 C.1 D.2
4、如果,且,那么的值一定是( ) .
A.正数 B.负数 C.0 D.不确定
5、下列命题与它的逆命题都为真命题的是( )
A.已知非零实数x,如果为分式,那么它的倒数也是分式.
B.如果x的相反数为7,那么x为-7.
C.如果一个数能被8整除,那么这个数也能被4整除.
D.如果两个数的和是偶数,那么它们都是偶数.
6、已知关于x的分式方程=1的解是负数,则m的取值范围是( )
A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2
7、多项式与多项式相加后,不含二次项,则常数m的值是( )
A.2 B. C. D.
8、若一个三角形的三边长是三个连续的自然数,其周长m满足10<m<20,则这样的三角形有( )
A.2个 B.3个 C.4个 D.5个
9、下面几何体是棱柱的是( )
A. B. C. D.
10、石景山某中学初三班环保小组的同学,调查了本班名学生自己家中一周内丢弃的塑料袋的数量,数据如下(单位:个),,,,,,,,,.若一个塑料袋平铺后面积约为,利用上述数据估计如果将全班名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.
2、若,则________.
3、(1)定义“*”是一种运算符号,规定,则=________.
(2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.
4、双曲线,当时,随的增大而减小,则________.
5、若a、b互为相反数,c、d互为倒数,m的绝对值是1,则3a+3b -mcd=__________.
三、解答题(5小题,每小题10分,共计50分)
1、某电商的商品平均每天可销售40件, 每件盈利50元.临近春节, 电商决定降价促销. 经调查表明: 每件商品每降低1元, 其日平均销量将增加2件. 设商品每件降价元, 日销併利润为元.
(1)写出关于的函数表达式;
(2)当降价多少元时, 日销售利润最大? 最大利润是多少元?
2、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.
(1)求A、B两点的坐标;
(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.
3、某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为(元/件)(的整数),每天销售利润为(元).
(1)直接写出与的函数关系式为:_________;
(2)若要使每天销售利润为270元,求此时的销售单价;
(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润的取值范围.
4、小丽从家到学校有公路和小路两种路径,已知公路比小路远320米.早上小丽以61米/分钟的速度从公路去上学,10分钟后,爸爸发现她的作业忘带了,就以90米/分钟的速度沿小路去追赶,结果恰好在学校门口追上小丽.问小丽从家到学校的公路有多少米?
5、如图,抛物线与轴交于两点,与轴交于点,直线与抛物线交于两点,与轴交于点,且点为;
(1)求抛物线及直线的函数关系式;
(2)点为抛物线顶点,在抛物线的对称轴上是否存点,使为等腰三角形,若存在,求出点的坐标;
(3)若点是轴上一点,且,请直接写出点的坐标.
-参考答案-
一、单选题
1、C
【分析】
根据绝对值的性质,得出,即可得解.
【详解】
由题意,得
解得
故选:C.
【点睛】
此题主要考查绝对值的性质,熟练掌握,即可解题.
2、D
【分析】
根据,推出,再由,得到,利用直角三角形中两个锐角互余即可得出.
【详解】
∵,∠DEB+∠DEC=180°,
∴,
又∵,
∴
∴,
即
故选:D.
【点睛】
本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.
3、B
【解析】
【分析】
先解方程组,得出x,y的值,再把它代入x+y<6即可得出m的范围.由此即可得出结论.
【详解】
解方程组,得:.
∵x+y<6,∴5m﹣2+(4﹣9m)<6,解得:m>﹣1,∴m的最小整数值是0.
故选B.
【点睛】
本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组.
4、A
【分析】
根据有理数的加减法法则判断即可.
【详解】
解:∵a<0,b<0,且|a|<|b|,
∴-b>0,|a|<|-b|,
∴=a+(-b)>0.
故选:A.
【点睛】
本题考查有理数的加减法法则.用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号.
5、B
【分析】
先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.
【详解】
解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;
B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;
C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;
D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;
故选B.
【点睛】
本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
6、D
【分析】
解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.
【详解】
=1,
解得:x=m﹣3,
∵关于x的分式方程=1的解是负数,
∴m﹣3<0,
解得:m<3,
当x=m﹣3=﹣1时,方程无解,
则m≠2,
故m的取值范围是:m<3且m≠2,
故选D.
【点睛】
本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.
7、B
【分析】
合并同类项后使得二次项系数为零即可;
【详解】
解析:,当这个多项式不含二次项时,有,解得.
故选B.
【点睛】
本题主要考查了合并同类项的应用,准确计算是解题的关键.
8、B
【解析】
【分析】
首先根据连续自然数的关系可设中间的数为x,则前面一个为x﹣1,后面一个为x+1,根据题意可得10<x﹣1+x+x+1<20,再解不等式即可.
【详解】
设中间的数为x,则前面一个为x﹣1,后面一个为x+1,由题意得:
10<x﹣1+x+x+1<20
解得:3x<6.
∵x为自然数,∴x=4,5,6.
故选B.
【点睛】
本题考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.
9、A
【分析】
根据棱柱:有两个面互相平行且相等,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱作答.
【详解】
解:A、符合棱柱的概念,是棱柱.
B、是棱锥,不是棱柱;
C、是球,不是棱柱;
D、是圆柱,不是棱柱;
故选A.
【点睛】
本题主要考查棱柱的定义.棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等.
10、D
【分析】
先求出每一名学生自己家中一周内丢弃的塑料袋的数量的平均数,即可得到每名同学丢弃的塑料袋平铺后面积.那么全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开所占面积即可求出.
【详解】
由题意可知:本班一名学生自己家中一周内丢弃的塑料袋的数量的平均数为=10个,则每名同学丢弃的塑料袋平铺后面积约为10×0.25m2=2.5,全班40名同学的家庭在一周内共丢弃的塑料袋全部铺开,面积约为40×2.5=100m2.
故选D.
【点睛】
本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.
二、填空题
1、m=4.
【详解】
分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.
详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,
∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,
解得m≤5.5,且m≠5,
则m的最大整数解是m=4.
故答案为m=4.
点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.
2、
【分析】
根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可.
【详解】
解:根据题意,可得m的取值有三种,分别是:
当m>0时,则可转换为m=m+1,此种情况不成立.
当m=0时,则可转换为0=0+1,此种情况不成立.
当m<0时,则可转换为-m=m+1,解得,m=.
将m的值代入,则可得(4m+1)2011=[4×()+1]2011=-1.
故答案为:-1.
【点睛】
本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想.
3、2019; 800.
【分析】
(1)利用已知的新定义计算即可得到结果;
(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.
【详解】
解:(1)∵
∴=2-(-2)+2015=2019;
(2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,
∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,
∴买地毯至少需要20×40=800元.
故答案为:(1)2019;(2)800.
【点睛】
(1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键.
(2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.
4、
【分析】
根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.
【详解】
根据题意得:,解得:m=﹣2.
故答案为﹣2.
【点睛】
本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.
5、-1或1.
【分析】
由a、b互为相反数,c、d互为倒数,m的绝对值是1得出a+b=0、cd=1,m=±1,代入计算即可.
【详解】
解:∵a、b互为相反数,c、d互为倒数,m的绝对值是1,
∴a+b=0、cd=1,m=±1,
当m=1时,3a+3b -mcd=3(a+b)-mcd=0-1= -1,
当m=-1时,3a+3b -mcd=3(a+b)-mcd=0-(-1)= 1.
故答案为:-1或1.
【点睛】
本题考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键.
三、解答题
1、
(1);
(2)当降价15元时,日销售利润最大,最大利润是2450元
【分析】
(1)每件降价元时,每件盈利元,每天可售出件,由此可得;
(2)对,由二次函数性质可知当,元.
(1)
解:每件降价元时,每件盈利元,每天可售出件,则该网店一天可获利润为
;
(2)
解:,
,
当,(元,
答:当降价15元时,日销售利润最大,最大利润是2450元.
【点睛】
本题考查了二次函数的应用,解题的关键是注意寻找等量关系,并且学会使用二次函数的性质来求最值.
2、
(1)A(1,0),B(5,0)
(2)(6,5)
【分析】
(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;
(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.
(1)
解:∵二次函数的图象与y轴交于
∴,解得a=1
∴二次函数的解析式为
∵二次函数的图象与x轴交于A、B两点
∴令y=0,即,解得x=1或x=5
∵点A在点B的左侧
∴A(1,0),B(5,0).
(2)
解:由(1)得函数解析式为
∴抛物线的顶点为(3,-4)
∵点D和点C到x轴的距离相等,即为5
∴点D在x轴的上方,设D的坐标为(d,5)
∴,解得d=6或d=0
∴点D的坐标为(6,5).
【点睛】
本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.
3、
(1)
(2)销售单价为或元
(3)
【分析】
(1)销售单价为元/件时,每件的利润为元,此时销量为,由此计算每天的利润即可;
(2)根据题意结合(1)的结论,建立一元二次方程求解即可;
(3)首先求出利润不超过时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可.
(1)
由题意得,
∴与的函数关系式为:;
(2)
由题意得:,
解得,
∵,
∴销售单价为或元;
(3)
∵每件小商品利润不超过,
∴,得,
∴小商品的销售单价为,
由(1)得,
∵对称轴为直线,
∴在对称轴的左侧,且随着的增大而增大,
∴当时,取得最大值,此时,
当时,取得最小值,此时
即该小商品每天销售利润的取值范围为.
【点睛】
本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键.
4、1220米
【分析】
设小丽从家到学校的时间为x分钟,根据小丽所走路程比爸爸所走路程多320米列方程即可.
【详解】
解:设小丽从家到学校的时间为x分钟
根据题意,得:61x-90(x-10)=320
解这个方程得:x=20
20×61=1220(米)
答:小丽从家到学校的公路有1220米
【点睛】
本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.
5、
(1),;
(2),,,;
(3)或
【分析】
(1)利用待定系数法解决问题即可;
(2)先求出AF长,再根据AF为腰或底边分三种情况进行讨论,即可解答;
(3)如图2中,将线段绕点逆时针旋转得到,则,设交轴于点,则,作点关于的对称点,设交轴于点,则,分别求出直线,直线的解析式即可解决问题.
(1)
抛物线与轴交于、两点,
设抛物线的解析式为,
在抛物线上,
,
解得,
抛物线的解析式为,
直线经过、,
设直线的解析式为,
则,
解得,,
直线的解析式为;
(2)
∵抛物线,
∴顶点坐标,
当点A为顶点,AF为腰时,AF=AG,此时点G与点F是关于x轴的对称,故此时;
当点F为顶点,AF为腰时,FA=FG,此时
当点G为顶点,AF为底时,设,
,解得,
综上所述:
(3)
如图,将线段绕点逆时针旋转得到,则,
设交轴于点,则,
,
直线的解析式为,
,
将线段绕点顺时针旋转得到,,
则直线的解析式为,
设交轴于点,则,
,
综上所述,满足条件的点的坐标为或.
【点睛】
本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,待定系数法,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建二次函数解决最值问题,学会构造特殊三角形解决问题,属于中考压轴题.
【历年真题】最新中考数学模拟专项测试 B卷(含答案详解): 这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解): 这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选),共26页。