【历年真题】2022年甘肃省白银市中考数学第一次模拟试题(含答案及详解)
展开2022年甘肃省白银市中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
2、已知,则的值为( )
A. B. C. D.
3、如图,已知△ABC与△DEF位似,位似中心为点O,OA:OD=1:3,且△ABC的周长为2,则△DEF的周长为( )
A.4 B.6 C.8 D.18
4、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
5、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
6、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
7、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
8、下列运算中,正确的是( )
A.=﹣6 B.﹣=5 C.=4 D.=±8
9、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )
A.20 B.16 C.12 D.10
10、下列二次根式中,不能与合并的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.
2、给出下列程序:若输入的值为1时,输出值为1;若输入的值为时,输出值为;则当输入的值为8时,输出值为______.
3、若a<<a+1,则整数a=___.
4、如图,海中有一个小岛A,一艘轮船由西向东航行,在点处测得小岛A在它的北偏东方向上,航行12海里到达点处,测得小岛A在它的北偏东方向上,那么小岛A到航线的距离等于____________海里.
5、如图,一次函数的图像与轴交于点,与正比例函数的图像交于点,点的横坐标为1.5,则满足的的范围是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.
2、以下表格是某区一户人家2021年11月份、12月份两次缴纳家庭使用自来水水费的回执,已知污水费、水资源费等都和用水量有关,根据表中提供的信息回答下列问题:
表1:
上月指数 | 387 | 本月指数 | 403 |
加减水量 | 0吨 | 水量 | l6吨 |
污水费 | 16.8元 | 垃圾费 | 8.00元 |
水资源费 | 3.20元 |
|
|
水价 | 1.45 | 水费23.20元 |
|
违约金 | 0.00元 |
|
|
合计 | 51.20元 | 缴费状态 | 已缴 |
表2:
上月指数 | 403 | 本月指数 | 426 |
加减水量 | 0吨 | 水量 | a吨 |
污水费 | b元 | 垃圾费 | 8.00元 |
水资源费 | 4.60元 |
|
|
水价 | 1.45 | 水费33.35元 |
|
违约金 | 0.00元 |
|
|
合计 | c元 | 缴费状态 | 已缴 |
(1)根据表1可知,污水费每吨 元,水资源费每吨 元;
(2)请写出表2中a= ,b= ,c= ;
(3)若该用户某个月份缴纳该项费用回执中合计是89元,则该用户这个月共消耗自来水多少吨?
3、观察并找出规律:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)当m=8时,和S的等式为_________
(2)按此规律计算:
①2+4+6+…+200值;
②82+84+86+…+204值.
4、如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接CF并延长交DE延长线于点K.
(1)根据题意,补全图形;
(2)求∠CKD的度数;
(3)请用等式表示线段AB、KF、CK之间的数量关系,并说明理由.
5、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.
-参考答案-
一、单选题
1、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
2、A
【分析】
由设,代入计算求解即可.
【详解】
解:∵
∴设
∴
故选:A
【点睛】
本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.
3、B
【分析】
由与是位似图形,且知与的位似比是,从而得出周长:周长,由此即可解答.
【详解】
解:∵与是位似图形,且,
与的位似比是.
则周长:周长,
∵△ABC的周长为2,
∴周长
故选:B.
【点睛】
本题考查了位似变换:位似图形的任意一对对应点与位似中心在同一直线上,它们到位似中心的距离之比等于相似比,位似是相似的特殊形式,位似比等于相似比,其对应的周长比等于相似比.
4、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
5、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
6、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
7、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
8、C
【分析】
根据算术平方根的意义逐项化简即可.
【详解】
解:A.无意义,故不正确;
B.﹣=-5,故不正确;
C.=4,正确;
D.=8,故不正确;
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
9、D
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;
【详解】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,,
∴,
∴,
∵点E为AC的中点,
∴,
故选:D
【点睛】
本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
10、B
【分析】
先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.
【详解】
解:能与合并, 故A不符合题意;
不能与合并,故B不符合题意;
能与合并, 故C不符合题意;
能与合并, 故D不符合题意;
故选B
【点睛】
本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.
二、填空题
1、
【分析】
过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.
【详解】
过、、…分别作x轴的垂线,垂足分别为、、…,
则,
∵是等腰直角三角形,
∴,
∴,
∴,
其斜边的中点在反比例函数,
∴,即,
∴,
∴,
设,则,此时,代入得:,
解得:,即:,
同理:,
,
……,
∴
故答案为:,.
【点睛】
本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.
2、3
【分析】
设输出的值为y,根据程序可得计算法则:,根据待定系数法确定k,b的值,再将8代入即可.
【详解】
解:设输出的值为,根据图示可得计算法则为,
若输入的值为1时,输出值为1;若输入的值为时,输出值为,
,解得,
,
当时,,
3、3
【分析】
估算出的取值范围即可求出a的值.
【详解】
解:∵,
∴3<<4,
∵a<<a+1,
∴a=3,
故答案为:3.
【点睛】
此题主要考查了估算无理数的大小,在确定形如(a≥0)的无理数的整数部分时,常用的方法是“夹逼法”,其依据是平方和开平方互为逆运算.
4、
【分析】
如图,过点A作AD⊥BC于D,根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,可得∠ABD=30°,∠ACD=60°,∠CAD=30°,根据外角性质可得∠BAC=30°,可得AC=BC,根据含30°角的直角三角形的性质可得出CD的长,利用勾股定理即可求出AD的长,可得答案.
【详解】
如图,过点A作AD⊥BC于D,
根据题意可知∠EBA=60°,∠FCA=30°,EB⊥BC,FC⊥BC,BC=12,
∴∠ABD=30°,∠ACD=60°,∠CAD=30°,
∴∠BAC=∠ACD-∠ABD=30°,
∴AC=BC=12,
∴CD=AC=6,
∴AD===.
故答案为:
【点睛】
本题考查方向角的定义、三角形外角性质、含30°角的直角三角形的性质及勾股定理,三角形的一个外角,等于和它不相邻的两个内角的和;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定义是解题关键.
5、x>-3
【分析】
根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为.
【详解】
∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,
∴
解得m=k-2
联立y=mx和y=kx+6得
解得x=-3
即函数y=mx和y=kx+6交点P’的横坐标为-3,
观察函数图像得,
满足kx−3<mx<kx+6的x的范围为:
故答案为:
【点睛】
本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx−3<mx<kx+6解集转化为直线y=mx与直线y=kx-3,直线y=kx+6相交的横坐标x的范围.
三、解答题
1、见解析
【分析】
利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.
【详解】
证明:∵AC,BD相交于的点O,
∴∠AOB=∠DOC,
又∵∠ABO=∠C,
∴△AOB∽△DOC.
【点睛】
本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.
2、
(1)
(2),,
(3)该用户这个月共消耗自来水30吨.
【分析】
(1)由污水费除以用水的数量可得污水费的单价,由水资源费除以用水的数量可得水资源费的单价;
(2)由本月指数减去上月指数可得用水量,由用水数量乘以污水费的单价可得污水费用,再把污水费,水资源费,垃圾费,水费相加即可得到的值;
(3)设该用户这个月共消耗自来水吨,再由污水费,水资源费,垃圾费,水费之和为89列方程解方程即可.
(1)
解:由表1可得:污水费每吨(元),水资源费每吨(元),
故答案为:
(2)
解:用水量(吨),
污水费(元),
总费用(元).
故答案为:
(3)
解:设该用户这个月共消耗自来水吨,则
整理得:
解得:
答:设该用户这个月共消耗自来水吨.
【点睛】
本题考查的是有理数的加减乘除运算的实际应用,一元一次方程的应用,理解题意列出运算式,确定相等关系列方程是解本题的关键.
3、
(1)8×9=72
(2)①10100 ②8866
【分析】
(1)仔细观察给出的等式可发现从2开始连续2个偶数和是2×3,连续3个,4个偶数和为3×4,4×5,当有m个从2开始的连续偶数相加是,式子就应该表示成:2+4+6+…+2m=m(m+1),从而推出当m=8时,和的值;
(2)①直接根据(1)中规律计算即可;
②用2+4+6+…+82+84+86+…+204的和减去2+4+6+…+80的和即可.
(1)
解:∵2+2=2×2,
2+4=6=2×3=2×(2+1),
2+4+6=12=3×4=3×(3+1),
2+4+6+8=20=4×5=4×(4+1),
…,
∴2+4+6+…+2m=m(m+1),
∴m=8时,和为:8×9=72;
故答案为:72;
(2)
①2+4+6+…+200
=100×101,
=10100;
②82+84+86+…+204 =(2+4+6+…+82+84+86+…+204)-(2+4+6+…+80)
=102×103-40×41
=10506-1640
=8866.
【点睛】
此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.
4、
(1)见解析
(2)45°
(3)KF2+CK2=2AB2,见解析
【分析】
(1)按题意要求出画出图形即可;
(2)过点D作DH⊥CK于点H,由轴对称的性质得出DA=DF,∠ADE=∠FDE,由正方形的性质得出∠ADC=90°,AD=DC,证出∠EDH=45°,由直角三角形的性质可得出结论;
(3)由轴对称的性质得出AK=KF,∠AKE=∠CKD=45°,由正方形的性质得出∠B=90°,∠BAC=45°,由等腰直角三角形的性质及勾股定理可得出结论.
(1)
如图,
(2)
过点D作DH⊥CK于点H,
∵点A关于DE的对称点为点F,
∴DA=DF,∠ADE=∠FDE,
∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
∴DF=DC,
∵DH⊥CK,
∴∠FDH=∠CDH,∠DHF=90°,
∴∠ADE+∠FDE+∠FDH+∠CDH=90°,
∴∠FDE+∠FDH=45°,
即∠EDH=45°,
∴∠CKD=90°-∠EDH=45°;
(3)
线段AB、KF、CK之间的数量关系为:KF2+CK2=2AB2.
证明:∵点A关于DE的对称点为点F,
∴AK=KF,∠AKE=∠CKD=45°,
∵四边形ABCD是正方形,
∴∠B=90°,∠BAC=45°,
在Rt△ABC中,∠B=90°,
∴AC=AB,
在Rt△AKC中,∠AKC=90°,
∴AK2+CK2=AC2,
∴KF2+CK2=2AB2.
【点睛】
本题考查了正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
5、.
【分析】
只要证明CD⊥AB即可解决问题.
【详解】
解:如图②中,
∵点D是△ABC的“理想点”,
∴∠ACD=∠B,
∵,
∴,
∴,
,
在Rt△ABC中,
,
∴BC= ,
∵,
.
【点睛】
本解考查了直角三角形判定和性质,理解新定义是解本题的关键.
【真题汇编】2022年甘肃省白银市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解): 这是一份【真题汇编】2022年甘肃省白银市中考数学历年真题汇总 卷(Ⅲ)(含答案及详解),共20页。试卷主要包含了已知的两个根为,已知,则的值为,下列式子运算结果为2a的是.,下列各数中,是无理数的是等内容,欢迎下载使用。
【历年真题】2022年中考数学第一次模拟试题(含答案及详解): 这是一份【历年真题】2022年中考数学第一次模拟试题(含答案及详解),共20页。试卷主要包含了计算-1-1-1的结果是,下列各数中,是无理数的是等内容,欢迎下载使用。
【真题汇编】2022年甘肃省白银市中考数学真题模拟测评 (A)卷(含详解): 这是一份【真题汇编】2022年甘肃省白银市中考数学真题模拟测评 (A)卷(含详解),共25页。试卷主要包含了和按如图所示的位置摆放,顶点B,已知的两个根为,下列各数中,是无理数的是等内容,欢迎下载使用。