2023届高考一轮复习讲义(文科)第九章 平面解析几何 第1讲 高效演练 分层突破学案
展开
这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第1讲 高效演练 分层突破学案,共5页。
1.若直线过点(1,1),(2,1+eq \r(3)),则此直线的倾斜角的大小为( )
A.30° B.45°
C.60° D.90°
解析:选C.设此直线的倾斜角为α,则k=tan α=eq \f(1+\r(3)-1,2-1)=eq \r(3).又a∈[0,π),所以α=60°.故选C.
2.已知直线l的斜率为eq \r(3),在y轴上的截距为另一条直线x-2y-4=0的斜率的倒数,则直线l的方程为( )
A.y=eq \r(3)x+2 B.y=eq \r(3)x-2
C.y=eq \r(3)x+eq \f(1,2) D.y=-eq \r(3)x+2
解析:选A.因为直线x-2y-4=0的斜率为eq \f(1,2),所以直线l在y轴上的截距为2,所以直线l的方程为y=eq \r(3)x+2.
3.(2020·黑龙江鹤岗一中期中)已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )
A.1 B.-1
C.2或1 D.-2或1
解析:选D.当a=0时,直线方程为y=2,显然不符合题意,当a≠0时,令y=0,得到直线在x轴上的截距是eq \f(2+a,a),令x=0,得到直线在y轴上的截距为2+a,根据题意得eq \f(2+a,a)=2+a,解得a=-2或a=1,故选D.
4.若eq \f(3π,2)
相关学案
这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第8讲 第1课时 高效演练 分层突破学案,共5页。
这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第3讲 高效演练 分层突破学案,共6页。
这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第6讲 高效演练 分层突破学案,共6页。