|学案下载
终身会员
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第5讲 第1课时 高效演练 分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第九章 平面解析几何    第5讲 第1课时 高效演练 分层突破学案01
    2023届高考一轮复习讲义(文科)第九章 平面解析几何    第5讲 第1课时 高效演练 分层突破学案02
    2023届高考一轮复习讲义(文科)第九章 平面解析几何    第5讲 第1课时 高效演练 分层突破学案03
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第5讲 第1课时 高效演练 分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第5讲 第1课时 高效演练 分层突破学案,共6页。

    1.已知正数m是2和8的等比中项,则圆锥曲线x2+eq \f(y2,m)=1的焦点坐标为( )
    A.(±eq \r(3),0) B.(0,±eq \r(3))
    C.(±eq \r(3),0)或(±eq \r(5),0) D.(0,±eq \r(3))或(±eq \r(5),0)
    解析:选B.因为正数m是2和8的等比中项,所以m2=16,即m=4,所以椭圆x2+eq \f(y2,4)=1的焦点坐标为(0,±eq \r(3)),故选B.
    2.(2019·高考北京卷)已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(1,2),则( )
    A.a2=2b2 B.3a2=4b2
    C.a=2b D.3a=4b
    解析:选B.由题意得,eq \f(c,a)=eq \f(1,2),所以eq \f(c2,a2)=eq \f(1,4),又a2=b2+c2,所以eq \f(a2-b2,a2)=eq \f(1,4),eq \f(b2,a2)=eq \f(3,4),所以4b2=3a2.故选B.
    3.曲线eq \f(x2,169)+eq \f(y2,144)=1与曲线eq \f(x2,169-k)+eq \f(y2,144-k)=1(k<144)的( )
    A.长轴长相等 B.短轴长相等
    C.离心率相等 D.焦距相等
    解析:选D.曲线eq \f(x2,169-k)+eq \f(y2,144-k)=1中c2=169-k-(144-k)=25,所以c=5,所以两曲线的焦距相等.
    4.(2020·郑州模拟)已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,离心率为eq \f(2,3),过F2的直线l交C于A,B两点,若△AF1B的周长为12,则C的方程为( )
    A.eq \f(x2,3)+y2=1 B.eq \f(x2,3)+eq \f(y2,2)=1
    C.eq \f(x2,9)+eq \f(y2,4)=1 D.eq \f(x2,9)+eq \f(y2,5)=1
    解析:选D.由椭圆的定义,知|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,所以△AF1B的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=12,所以a=3.因为椭圆的离心率e=eq \f(c,a)=eq \f(2,3),所以c=2,所以b2=a2-c2=5,所以椭圆C的方程为eq \f(x2,9)+eq \f(y2,5)=1,故选D.
    5.(2020·昆明市诊断测试)已知F1,F2为椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点,B为C的短轴的一个端点,直线BF1与C的另一个交点为A,若△BAF2为等腰三角形,则eq \f(|AF1|,|AF2|)=( )
    A.eq \f(1,3) B.eq \f(1,2)
    C.eq \f(2,3) D.3
    解析:选A.如图,不妨设点B在y轴的正半轴上,根据椭圆的定义,得|BF1|+|BF2|=2a,|AF1|+|AF2|=2a,由题意知|AB|=|AF2|,所以|BF1|=|BF2|=a,|AF1|=eq \f(a,2),|AF2|=eq \f(3a,2).所以eq \f(|AF1|,|AF2|)=eq \f(1,3).故选A.
    6.若椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为 .
    解析:由题意可得b=c,则b2=a2-c2=c2,a=eq \r(2)c,
    故椭圆的离心率e=eq \f(c,a)=eq \f(\r(2),2).
    答案:eq \f(\r(2),2)
    7.(2020·贵阳模拟)若椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(3),2),短轴长为4,则椭圆的标准方程为 .
    解析:由题意可知e=eq \f(c,a)=eq \f(\r(3),2),2b=4,得b=2,
    所以eq \b\lc\{(\a\vs4\al\c1(\f(c,a)=\f(\r(3),2),,a2=b2+c2=4+c2,))解得eq \b\lc\{(\a\vs4\al\c1(a=4,,c=2\r(3),))
    所以椭圆的标准方程为eq \f(x2,16)+eq \f(y2,4)=1.
    答案:eq \f(x2,16)+eq \f(y2,4)=1
    8.(2019·高考全国卷Ⅲ)设F1,F2为椭圆C:eq \f(x2,36)+eq \f(y2,20)=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为 .
    解析:通解:由椭圆C:eq \f(x2,36)+eq \f(y2,20)=1,得c=eq \r(a2-b2)=4,不妨设F1,F2分别为左、右焦点,则由题意知|MF1|=|F1F2|=2c=8,于是由椭圆的定义得|MF1|+|MF2|=12,所以|MF2|=12-|MF1|=4,易知△MF1F2的底边MF2上的高h=eq \r(|F1F2|2-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)|MF2|))\s\up12(2))=eq \r(82-22)=2eq \r(15),所以eq \f(1,2)|MF2|·h=eq \f(1,2)|F1F2|·yM,即eq \f(1,2)×4×2eq \r(15)=eq \f(1,2)×8×yM,解得yM=eq \r(15),代入椭圆方程得xM=-3(舍去)或xM=3,故点M的坐标为(3,eq \r(15)).
    优解:不妨设F1,F2分别为左、右焦点,则由题意,得|MF1|=|F1F2|=8,由椭圆的焦半径公式得|MF1|=exM+6=eq \f(2,3)xM+6=8,解得xM=3,代入椭圆方程得yM=eq \r(15),故点M的坐标为(3,eq \r(15)).
    答案:(3,eq \r(15))
    9.已知椭圆的长轴长为10,两焦点F1,F2的坐标分别为(3,0)和(-3,0).
    (1)求椭圆的标准方程;
    (2)若P为短轴的一个端点,求△F1PF2的面积.
    解:(1)设椭圆的标准方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),
    依题意得eq \b\lc\{(\a\vs4\al\c1(2a=10,,c=3,))因此a=5,b=4,
    所以椭圆的标准方程为eq \f(x2,25)+eq \f(y2,16)=1.
    (2)易知|yP|=4,又c=3,
    所以S△F1PF2=eq \f(1,2)|yP|×2c=eq \f(1,2)×4×6=12.
    10.分别求出满足下列条件的椭圆的标准方程.
    (1)与椭圆eq \f(x2,4)+eq \f(y2,3)=1有相同的离心率且经过点(2,-eq \r(3));
    (2)已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5,3,过P且与长轴垂直的直线恰过椭圆的一个焦点.
    解:(1)由题意,设所求椭圆的方程为eq \f(x2,4)+eq \f(y2,3)=t1或eq \f(y2,4)+eq \f(x2,3)=t2(t1,t2>0),因为椭圆过点(2,-eq \r(3)),所以t1=eq \f(22,4)+eq \f((-\r(3))2,3)=2,或t2=eq \f((-\r(3))2,4)+eq \f(22,3)=eq \f(25,12).
    故所求椭圆的标准方程为eq \f(x2,8)+eq \f(y2,6)=1或eq \f(y2,\f(25,3))+eq \f(x2,\f(25,4))=1.
    (2)由于焦点的位置不确定,所以设所求的椭圆方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)或eq \f(y2,a2)+eq \f(x2,b2)=1(a>b>0),
    由已知条件得eq \b\lc\{(\a\vs4\al\c1(2a=5+3,,(2c)2=52-32,))
    解得a=4,c=2,所以b2=12.
    故椭圆的方程为eq \f(x2,16)+eq \f(y2,12)=1或eq \f(y2,16)+eq \f(x2,12)=1.
    [综合题组练]
    1.(2020·合肥市第二次质量检测)已知椭圆eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP,则该椭圆的离心率是( )
    A.eq \f(\r(3),3) B.eq \f(\r(2),3)
    C.eq \f(\r(3),2) D.eq \f(\r(2),2)
    解析:选D.如图,由题意知,P为以F1A为直径的圆上一点,所以F1P⊥AP,结合F2B∥AP知F1P⊥F2B.又|F1B|=|F2B|,所以△BF1F2为等腰直角三角形,所以|OB|=|OF2|,即b=c,所以a2=b2+c2=2c2,即a=eq \r(2)c,所以椭圆的离心率e=eq \f(c,a)=eq \f(\r(2),2),故选D.
    2.(2019·高考全国卷Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
    A.eq \f(x2,2)+y2=1 B.eq \f(x2,3)+eq \f(y2,2)=1
    C.eq \f(x2,4)+eq \f(y2,3)=1 D.eq \f(x2,5)+eq \f(y2,4)=1
    解析:选B.由题意设椭圆的方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=eq \f(a,2),故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ=eq \f(1,a).在等腰三角形ABF1中,cs 2θ=eq \f(\f(a,2),\f(3a,2))=eq \f(1,3),所以eq \f(1,3)=1-2(eq \f(1,a))2,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为eq \f(x2,3)+eq \f(y2,2)=1.故选B.
    3.已知椭圆C:x2+2y2=4.
    (1)求椭圆C的离心率;
    (2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.
    解:(1)由题意,椭圆C的标准方程为eq \f(x2,4)+eq \f(y2,2)=1.
    所以a2=4,b2=2,从而c2=a2-b2=2.
    因此a=2,c=eq \r(2).
    故椭圆C的离心率e=eq \f(c,a)=eq \f(\r(2),2).
    (2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.
    因为OA⊥OB,所以eq \(OA,\s\up6(→))·eq \(OB,\s\up6(→))=0,
    即tx0+2y0=0,
    解得t=-eq \f(2y0,x0).又xeq \\al(2,0)+2yeq \\al(2,0)=4,
    所以|AB|2=(x0-t)2+(y0-2)2=eq \b\lc\(\rc\)(\a\vs4\al\c1(x0+\f(2y0,x0)))eq \s\up12(2)+(y0-2)2
    =xeq \\al(2,0)+yeq \\al(2,0)+eq \f(4yeq \\al(2,0),xeq \\al(2,0))+4=xeq \\al(2,0)+eq \f(4-xeq \\al(2,0),2)+eq \f(2(4-xeq \\al(2,0)),xeq \\al(2,0))+4=eq \f(xeq \\al(2,0),2)+eq \f(8,xeq \\al(2,0))+4(0因为eq \f(xeq \\al(2,0),2)+eq \f(8,xeq \\al(2,0))≥4(0当且仅当xeq \\al(2,0)=4时等号成立,
    所以|AB|2≥8.
    故线段AB长度的最小值为2eq \r(2).
    4.(2019·高考全国卷Ⅱ)已知F1,F2是椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.
    (1)若△POF2为等边三角形,求C的离心率;
    (2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.
    解:(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=eq \r(3)c,于是2a=|PF1|+|PF2|=(eq \r(3)+1)c,故C的离心率e=eq \f(c,a)=eq \r(3)-1.
    (2)由题意可知,满足条件的点P(x,y)存在当且仅当
    eq \f(1,2)|y|·2c=16,eq \f(y,x+c)·eq \f(y,x-c)=-1,eq \f(x2,a2)+eq \f(y2,b2)=1,
    即c|y|=16,①
    x2+y2=c2,②
    eq \f(x2,a2)+eq \f(y2,b2)=1.③
    由②③及a2=b2+c2得y2=eq \f(b4,c2),又由①知y2=eq \f(162,c2),故b=4.
    由②③得x2=eq \f(a2,c2)(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4eq \r(2).
    当b=4,a≥4eq \r(2)时,存在满足条件的点P.
    所以b=4,a的取值范围为[4eq \r(2),+∞).
    相关学案

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第8讲 第1课时 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第8讲 第1课时 高效演练 分层突破学案,共5页。

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第3讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第3讲 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第九章 平面解析几何 第6讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第九章 平面解析几何 第6讲 高效演练 分层突破学案,共6页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map